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ABSTRACT 

Higher Education Institutions (HEIs) both locally and abroad are continuously faced with the 

difficult challenges of preparing university class schedules every semester, thus, making the 

University Timetabling Problem (UTP) considered as one of the most tedious recurring problems in 

higher education. The challenges of the UTP coupled with varying institutional policies, 

constraints, government regulations, and never-ending Higher Educations Orders (CMOs) and 

other variables needs to be addressed. This research focuses on the design and implementation of a 

heuristic multi-agent university timetabling solutions by employing local search and optimization 

algorithms, Tabu Search, Greedy Algorithm, Integer Linear Programming, and Bi-Partite Graph 

approach of Artificial Intelligence. Simulation results in one of the five campuses with random 

faculty member projected schedule using actual tertiary level scheduling data have shown that the 

system yielded feasible and optimum schedule solutions. The study was conducted among 2,000 

students and 200 faculty members. The implementation of achievable artificial intelligent and multi-

agent-based system in all the campuses has the possibility of gaining tremendous benefits such as 

less time and conflict-free schedule. 

Keywords : local optimization solutions, greedy algorithm, university timetabling problem, multi-

agent system, tabu search, and divide-and-conquer 

                           

INTRODUCTION 

Higher education institutions (HEIs) both locally and abroad are continuously faced with the 

difficult challenges of preparing university class schedules every semester, thus, making the 

University Timetabling Problem (UTP) commonly known as the University Class Scheduling 

Problem (UCSP) as one of the most tedious recurring enrollment tasks implemented among 

schools.[1][2] The challenges of the UTP are coupled with the different institutional policies and 

parameters.[3] Nonetheless,  the necessary variables of the problem are composed of 4; (1) a set of 

subjects based on a particular course or program; (2) a group of students who belong to a specific 

program and who are obliged to take subjects as outlined on their respective curriculum; (3) a set of 

teachers, each with distinct specialization, who will teach each subject belonging to a particular 

department of knowledge domain; (4) and a set of classrooms, either regular lecture room or 
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specialized facility (such as laboratories, music centers, gymnasiums) where classes will be 

accommodated on a particular timeslot and day. 

The UTP problem aims to find and assign school resources (classrooms and teachers) to a class 

without conflict to other classes – a class being an event composed of a subject and students to be 

held in a specific timeslot of the day.[3] Under this definition, elements of the class become the 

constraints or rules to be strictly observed, followed, and fulfilled to attain conflict-free class 

schedules. These constraints or rules are always referred to as hard constraints in the area of 

timetabling. On the other hand, other scheduling preferences that can be ignored to arrive in a 

conflict-free schedule are called soft constraints.[4] Given the number of teachers, rooms, subjects, 

days and timeslots, blocks of students, and teacher preferences, entails having several constraints 

and enormous combinatory possibilities. Thus, the search for a feasible solution is different from 

finding an optimum solution.[5] Nevertheless, both solutions require a higher level of human logic 

for the technical solution and practical implementation.[6] Under this context, Artificial Intelligence 

(AI) algorithms in the form of local search and optimization techniques are commonly utilized to 

solve the timetabling problem. It is also the reason why UTP is regarded as an NP-complete 

problem, a type of nondeterministic polynomial time (NP) hard problems characterized by having 

no known efficient and swift method of solving the problem.[7] 

A strategy to solve the UTP is utilizing a “divide and conquer” tactic by dividing the UTP into five 

sub-problems: teacher assignment, course scheduling, class-teacher timetabling, student scheduling 

and room assignment sub-problems in which each sub-problem is individually resolved by 

assigning a specific local search and optimization algorithm and forwarding the result as a partial 

solution to the other sub-problems. Recent studies also implemented artificial intelligent agents as 

part of a multi-agent system (MAS) to resolve the UTP by assigning a worker AI agent to each of 

UTP’s sub-problem and a management agent that will control and manage all working agents. 

This paper aims to evaluate the design of a multi-agent university timetabling model by 

implementing commonly-used local search and optimization algorithms to solve the university 

timetabling problem. The general constraints of each UTP sub-problem, as well as common tertiary 

level local state university class scheduling parameters, will be utilized as inputs for a computer 

simulation that will monitor the speed of finding a conflict-free solution and the total number of soft 

constraints satisfied for each iteration. 

2. Related Works 

In the context of higher education institutions, particularly local state universities, the UTP applies 

to the challenge of searching for a conflict-free class schedules by considering a set of 

courses/programs, each with a set of subjects, and assigning students, teachers, and rooms given a 

particular timeslot and day in a week.[8][9] The solution involves local search and optimization 

approaches as it requires to search and select the best solution among previously found solutions. 

Recent studies used machine learning (ML) to solve scheduling problems by utilizing artificial 

intelligent (AI) agents that learn to find an optimum solution among feasible solutions by 

mimicking humans in performing logic, complex calculations, and relationship cross-checking.[10]  

UTP are often denoted as hard or soft constraints-based problems. Hard constraints are rules to be 

strictly considered and fulfilled; otherwise, no feasible solution can be obtained. On the contrary, 

soft constraints or preferences are optional factors that can be ignored, but a feasible solution can 

still be arrived. However, satisfying soft constraints increases the quality of the solution, thus 

making the feasible solution an optimum one. Due to the varying needs and parameters of each 

HEI, the difficulty of developing a generic timetabling software model remains high.[11] 
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Nevertheless, recent studies have shown that by incorporating AI agents to each sub-problem of the 

UTP and by implementing commonly-used local search and optimization algorithms, a promising 

model can be achieved. 

2.1 Multi-agent Scheduling 

An agent is a computational system that is placed in an active setting and has the capability of 

autonomously rendering intelligent behavior. Its setting may include other agents that form a 

community of interacting agents, and as a whole, function as a multi-agent system. The solution for 

a University Timetabling Problem can be obtained by utilizing a “divide and conquer” approach by 

dividing the problem into five sub-problems and assigning each with a worker AI Agent being 

controlled and triggered by a manager AI agent. The solution from each AI agent is combined to 

provide an overall solution. 

a. Teacher AI Agent 

The teacher AI agent handles assigning and scheduling teachers to specific courses with the 

following assigned tasks: 

  

• Each course section has a minimum and maximum number of teachers to teach;  

• Part-time teachers are required to teach courses that cannot be taught by full-time teachers 

due to overload or out of specialization scope;  

• A maximum and minimum number of teachers can be assigned to a particular course 

depending on the number of course sections; 

• Each teacher should be given ample time for class and lesson preparation so the maximum 

number of hours per teacher should not exceed or be equal to 8 hours; and 

• Full-time teachers are prioritized for faculty loading. 
 

Course AI Agent 

The course AI is primarily assigned to resolve the course scheduling which involves the scheduling 

of subjects on a specific period, year level, and class sections for a particular course program 

approved by government agencies to be offered by the school. The main goal is to create a conflict-

free initial schedule of subjects as specified by each course curriculum per year level regardless of 

enrolled students with the following constraints: 

• Each student strictly follows a specific course curriculum; 

• A course curriculum is consisted of a set of subjects to be taken for a particular semester or 

year; 

• Each subject has its corresponding credit units equivalent to several hours of teaching in a 

week  

• Each class day consists at most two half days (i.e., morning and afternoon) with a fixed 

lunchtime in-between.  

• Students are grouped according to their courses and year level which entails the number of 

subjects the student has finished in following his curriculum;  

• Large courses in which numerous students are projected to enroll have to be divided into 

course sections;  
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• Sections of a course need not be taught by the same teacher. Hence, sections of a course may 

have periods and subjects to be taken in common but being taught by different teachers.  

• The number of teachers, as well as the set of course sections, is determined in advance based 

on the approved course offering and previously enrolled students. 

c. Class-Teacher AI Agent 

The class-teacher AI agent is tasked is to handle the creation of a schedule of teachers and class 

sections over a set of periods. The basic constraints that must be satisfied are: 

• Professors can only be in one class at any given time,  

• Students belonging to a section or class can only attend to a teacher’s lecture at any given 

time. This sub-problem also focuses on assigning substitute teacher to a particular class in 

the absence of the regular assigned teacher and merging of classes having the same subject 

to take under the same curriculum.[12] 

d. Student Scheduling AI Agent 

The student scheduling AI agent manages the actual student scheduling which is primarily involved 

in creating a balanced, almost gap-free or consecutive subject schedules for a specific period within 

the week based on the course curriculum of the student. A balanced and ideal student schedule 

relates to an even number of subject hours per day for the student to be taken in a week while gap-

free speaks about subjects being contiguously scheduled to maximize the usual 6 to 8 hours whole 

day class period.[13]
 

e. Room AI Agent 

• The primordial objective of room AI agent is to supervise the room assignment which covers 

allocating classes to rooms with the following constraints: 

• Lecture subjects should be taught inside regular lecture classrooms;  

• Laboratory or elective subjects should be taught inside a specialized facility or laboratory 

room where tools, devices, and equipment aide in learning;  

• A particular subject is taught in a classroom by a specific teacher during a specified timeslot; 

and; 

• Each room, regardless of type, has a maximum seating capacity. 

f. Central Communication AI Agent 

The central communication AI agent is the leader of all worker AI agents. It manages, controls, and 

triggers each worker agent and server as a communication bridge among other agents. It guarantees 

that each worker AI agent is working according to their prescribed task at any given time. 

2.2 Commonly Used AI-based Timetabling Algorithms 

Many works and meta-heuristic algorithms have been proposed to solve the University Timetabling 

Problem, which is based on local search and optimization techniques. This section provides 

different analytical timetabling algorithms based on local search optimizations that will be 

incorporated as part of the design of the multi-agent university timetabling.  
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a. Heuristics 

A heuristic function, or simply heuristic, is a method developed for solving a problem faster when 

available established approaches are too slow or require a lot of time and computing resources.  It is 

also used in creating an approximate solution when there is no exact solution.[14] Human intuition 

and learning are still the best forms and sources of heuristics, candidate solutions and options for 

trade-offs; hence, the availability of a vast number of algorithms and solutions for a particular 

problem and its related-problems.[15][16] Meanwhile, a meta-heuristic is a high-level function 

developed to generate or find a heuristic approach that can deliver a satisfactory solution to an 

optimization problem.[17] It is usually applied in combinatorial optimization to find an optimal 

solution over a discrete search space.[18] 

b. Tabu Search 

In Tabu Search, local searches mean taking a candidate solution by checking its immediate solutions 

(called neighbors) from a solution set that is similar but has very minute details hoping to find an 

enhanced solution.[19] Although the Tabu Search algorithm is more time consuming as complexity 

increases with a directly proportional increase in constraints, it is an efficient algorithm in terms of 

using limited computing resources. It has effectively avoided loops in cycling back to previously 

visited solutions through memory structure called Tabu List.[20] 

c. Greedy Algorithm 

Greedy algorithm is a heuristic model that assumes local optima at each phase hoping to find the 

optimal solution. The utilization of the greedy algorithm to solve the timetabling problem is capable 

to solve a complicated multiple hard constraint conditions. These conditions are: 

• uniform teaching resources, which include teachers, students, and classrooms, with 

practicable timeslots, and  

• a balance for all the curricular loads of students and teachers’ satisfaction of preferred 

lecture schedule.  

• The greedy algorithm is indeed useful and the runtime shortens significantly as compared to 

other techniques used in the timetabling system. 

d. Integer Linear Programming (ILP) Algorithm 

Linear programming (LP), is a technique to attain the best result in a mathematical model that 

requires to be characterized through linear relationships. The main goal of this algorithm is to 

search for a point in the polyhedron’s function, where the largest or smallest value exists. If the 

value being searched for and values to choose from the feasible region needs to be integers, then the 

problem is referred to as an integer programming (IP) or integer linear programming (ILP) problem. 

There are various fields of study where linear programming can be utilized, such as vehicle service 

scheduling, which then can be adapted to university class timetabling by modifying the routes to 

courses/subjects, vehicles to classrooms, vehicle drivers to teachers, and passengers to students.[21] 

IP techniques can be used to model university class scheduling which can integrate several 

academic, operational requirements and constraints and generate a feasible outcome for practical 

use. 

e. Bi-Partite Graph Approach 

In a bipartite graph, an element from a set is linked through a line to one or all of the elements of 

another set, thus, forming bipartite relations. The bipartite graph approach can be used in 
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timetabling problems by converting the list of teachers, classrooms, subjects, students, courses into 

vertex sets where each element in the list will become an element of a vertex set. Relations will be 

linked from corresponding vertices, and then vertex value matching, collisions and non-collisions, 

and possible optimizations can be performed. Results of experimental studies demonstrated that 

utilizing a bipartite graph approach can solve university timetabling problems.[22] 

MATERIALS AND METHOD 

This research aimed to develop the design of multi-agent university timetabling to solve the 

University Timetabling Problem for a tertiary level local state university by considering the 

characteristics of agents, constraints, and parameters of the five sub-problems of UTP and the 

characteristics of commonly-used local search and optimization algorithms discussed above.  

The researchers used and combined the goal-based and layered architecture models of AI agents to 

embody each agent’s input, methods, goals, thresholds, decisions, and response. The researchers 

used seven AI agents that will interact and communicate with one another to come up with a 

conflict-free schedule. The AI agents are composed of two Central Communication AI agents (one 

each in the frontend and backend of the system), which will be manager agents and 5 worker agents 

as part of the backend, each corresponds to the sub-problem of UTP. Figure 1 exhibits the 

organization and communication diagram of the seven AI agents both in the frontend and backend 

of the multi-agent university timetabling system. 

 

 
Figure 1: Organization and communication model of the proposed system design 

 

The constraint evaluation targets to assess how the proposed design of the multi-agent university 

timetabling that will satisfy all hard constraints and some of the soft constraints by considering all 

required input data of the five sub-problems of the Timetabling problem. These input data were 

listed and assessed, which forms the hard and soft constraints. The criteria set for a feasible solution 

is that all hard constraints must not be violated even for a single instance, and class events of all 

schedules must be conflict-free among the rest of the class events. Conversely, the criteria set for an 

optimum solution is to have a higher average course curriculum weekly subject load distribution 

rate among blocks or sections, and a higher teacher preference satisfaction result. Meanwhile, the 

computational speed evaluation will calculate the total time elapsed until the hybrid algorithm finds 

a feasible solution. 

Sixteen hard constraints were identified and organized about the context of the subject tertiary level 

local state university. These hard constraints were listed after studying the university’s 

administrative and faculty manuals, government policies for state universities, previous and current 

enrollment reports of the university, the university’s government-approved tertiary level programs, 

and the four UTP hard constraints.  



FERNANDO S et al                                                          J. of Eng. & Techn. Res., 2019, 7(4):1:12 

  

 

7 

 

 

Table 1 shows the 16 hard constraints identified, their sources, as well as the UTP sub-problem and 

AI agent in which it is corresponding. 

 

Table 1: Hard Constraints 

# Constraint Sub-Problem Involve 

1 
A class must be assigned a specific 

teacher at any given timeslot and day. 
Teacher 

2 
A class must be assigned one subject 

only at any given timeslot and day. 
Course 

3 
A class block must attend to only one 

subject at any given timeslot and day.  
Student 

4 

A class must be assigned to one 

classroom only at any given timeslot 

and day. 

Room 

5 
Full-time teachers should be 

prioritized over part-timers 
Teacher 

6 
Subjects to be offered are based on 

approved programs only. 
Course 

7 
The teaching load is a maximum of 

21 units per semester. 
Teacher 

8 

Teachers with administrative 

functions will be de-loaded to 12 

units per semester. 

Teacher 

9 The minimum class population is 15. Class-Teacher 

10 The maximum class population is 50. Class-Teacher 

11 

Low-class populations of the same 

subject regardless, of course, can be 

merged into one. 

Class-Teacher 

12 

Either department/college can use 

classrooms from other colleges or 

departments for lecture purposes. 

Room 

13 
A 3-unit lab subject is equivalent to 5 

teaching hrs. 
Course 

14 
A 3-unit lab subject is equivalent to 

4.25 teaching load 
Teacher 

15 
Basis of class blocks is the 

enrollment report. 
Student 

16 

Programs to be offered are those 

approved and certified only by the 

government. 

Course 

Listing of hard constraints identified and their respective involved UTP sub-problem. 
 

In terms of soft constraints, the researchers analyzed sample teacher preferences about class 

scheduling and narrowed down these preferences into six (6) natures of teacher preference. Each 

preference is given an equivalent score that will be summed up if ever the class events of the 

solution found will fit into either of these preferences.  
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Table 2 lists the 6 natures of teacher preferences, which will be used as soft constraints and their 

corresponding score. 

An actual set of teacher preferences, a list of teachers, classrooms, subjects, block sections, and 

curricula from a chosen college of the subject state university were prepared and served as test data 

for the simulation. 

Table 2: Natures of Teacher Preferences (Soft Constraints) 

# Nature Short Description 

Max 

Scor

e 

1 
Subject-

based 

Preferring a subject to be taught 

based on specialization 
1 

2 
Timeslot-

based 

Selecting a timeslot when to 

teach a subject to perform other 

officially appointed duties and 

functions 

1 

3 
Room-

based 

Opting to teach in a nearby or 

lower-storey room 
1 

4 

Subject-

Timeslot-

based 

Preferring a to teach a subject 

based on specialization on a 

particular timeslot 

2 

5 

Subject-

Room-

based 

Preferring to teach a subject 

based on specialization on a 

particular classroom 

2 

6 

Room-

Timeslot-

based 

Preferring to teach a subject a 

particular timeslot and in a 

nearby or lower-storey room. 

2 

7 

Subject-

Timeslot-

Room-

based 

Preferring to teach a subject 

based on specialization on a 

particular timeslot to a nearby or 

lower-storey classroom 

3 

Listing of the natures of teaching preferences as soft constraints. 

The current enrollment report of the college was also included as part of the test data to simulate the 

projected number of blocks or class sections. The test data is equivalent to an enrollment scheduling 

data for a semester of a university college with 5 departments, each with four 4-year degree courses 

for the morning shift. 

RESULTS AND DISCUSSION 

Figure 2 exhibits the framework of the proposed design of the multi-agent university timetabling 

which highlights the organization and communication of the seven AI agents both in the frontend 

and backend and how the multi-agent scheduling is related to constraints, stakeholders of the 

university, and the goal of producing a conflict-free schedule. 
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Figure 2: Framework of the proposed multi-agent university timetabling system 

 

The sources of constraints for the UTP come from the different university stakeholders such as the 

academic heads, who provide a list of faculty, load distribution, room assignment, curriculum, 

enrollment reports, faculty specialization, and preferred schedule. These data will be encoded in 

t6he system via the frontend module, where the Frontend Communication Central AI agent resides 

to manage database access and retrieval and administering schedule requests and outputs from the 

backend. The backend module of the multi-agent university timetabling is composed of the 

Backend Central Communication AI agent who handles schedule requests from the frontend and 

who assigns scheduling tasks to the 5 worker AI agents, which correspond to the 5 sub-problems of 

UTP. Once a feasible solution is found, the backend AI agent will report it back to the frontend AI 

Agent, who will then save it to the database for retrieval and reporting purposes. 

 

 
Figure 3: Process Flow of the Proposed Design of the Multi-Agent University Timetabling 

 

Figure 3 is a multi-agent university timetabling process flow was established, which is composed of 

the different tasks involved in finding a feasible solution to the UTP after carefully evaluating the 

parameters of each sub-problem of the University Timetabling Problem. It exhibits the step-by-step 

solution in solving the UTP by dividing the problem into phases and tasks to solve a sub-problem of 

UTP by using the corresponding local search and optimization algorithm. The figure also shows the 

steps to be taken by the multi-agent system to iterate and look for an optimum solution after finding 

the initial feasible solution. 

The initialization phase commences once the frontend central communication AI agent receives a 

schedule creation request from the system end-user and forwards it to the backend central 

communication AI agent after passing validation. In this phase, backend central communication AI 
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Agent triggers backend worker AI agents to commence their work after assigning each agent’s 

required input variables. It is also during this phase that the student and class-teacher AI Agents 

create blocks by observing the minimum and a maximum number of student population per block. 

After the initialization phase, the class events creation and hard constraints satisfaction phase will 

immediately follow. During this phase, the course AI Agent will create and select a course 

curriculum template for each program offering per year level. The course curriculum template is the 

distribution of subjects to be taken by each course per year level in a week by observing the number 

of hours per subject. This task solves the course sub-problem by utilizing heuristics instead of 

relying on all possible combinations of subjects, timeslots, and days. At this point, the subject 

loading score is also computed per template, which provides information on how to balance the 

subjects spread out each day in a week. Once all course templates are created, class events array 

will be created by the class-teacher AI Agent and will be encoded with the selected timeslot scheme 

chosen by student AI Agent. A timeslot scheme ensures that schedules do not cluster from one part 

of the day by using several starting hours of each class block., i.e., 8:00 AM scheme sets class-

blocks scheduled to start every 8:00 AM while a 9:00 AM scheme starts schedule of a block at 9:00 

AM and ends depending on the total number of subject and subjects hours the class block has. 

Meanwhile, the integer linear programming is used to assign respective subjects and timeslots for 

each class event performed by the class-teacher AI agent. After this, Room and Teacher AI Agent 

will assign the corresponding room and teacher for each class event by implementing a greedy 

algorithm. 

Once all class events are assigned with subject, teacher, room and class blocks/sections, a schedule 

is created and will be subjected to several battery of tests and checks to validate and ensure that they 

are conflict-free from one another which occurs during schedule validation and constraints checking 

phase by each backend worker AI agent utilizing bi-partite graph approach. Each class event is 

compared to the rest of the class events array and ensure that all hard constraints are followed. If all 

hard constraints are satisfied with all of the elements of the class events array, it means that the 

result is a feasible solution.  

If a solution is found, the system will compare this from previously found solutions and check 

whether it is an optimal solution by observing the average subject loading score from each class 

block and the total number of teacher preferences satisfied. This checking (performed by backend 

central communication AI Agent) implements tabu search, which saves to memory those right 

solutions and iterates again until the given iteration count is reached. The solution with the highest 

average subject loading score and the most teacher preferences satisfied will be considered as the 

optimum solution and will be forwarded to the frontend central communication AI agent for saving 

and reporting purposes 

The average speed of the proposed design of the multi-agent university timetabling for creating a 

conflict-free class schedule involving 5 courses, 38 blocks, and 847 class events is 40.22 seconds 

with an average block schedule loading score of 89.55% and an average teacher preferences 

satisfaction of 318.20. The data is indicative that the more tries (which entails more time) that are 

given for the system to generate a conflict-free schedule, the higher the average block schedule 

loading score and teacher preferences satisfaction it can obtain. 

CONCLUSION 

The implementation of the proposed design of the multi-agent university timetabling in the multi-

constraint inputs and environment of the university timetabling problem provides encouraging 

results given ample computational resources and time after combining goal-based and layered 



FERNANDO S et al                                                          J. of Eng. & Techn. Res., 2019, 7(4):1:12 

  

 

11 

 

architecture models of AI agents and utilizing universal AI-based local search and optimization 

algorithms. With the organized scheduling phases and tasks involved under the proposed design of 

the multi-agent system, a feasible solution was obtained as it satisfies all the hard constraints. An 

optimum solution in preparing a conflict-free schedule involving 5 courses, 38 blocks, 1,624 

students, and 847 class events was achieved in just 40.22 seconds with an average subject loading 

score of 89.55% that indicates that the class schedules created are balanced and evenly distributed 

in a week. The proposed design of the multi-agent university timetabling system also satisfied an 

average of 318.20 teacher scheduling preferences, which is indicative of a new quality to the 

feasible solution.  
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