
1

www.scientiaresearchlibrary.com tAvailable online a

 Scientia Research Library ISSN 2348-0424

 USA CODEN: JETRB4

Journal of Engineering And Technology Research,

2019, 7 (1):1-10

)m/arhcive.phphttp://www.scientiaresearchlibrary.co(

A COMPARATIVE ANALYSIS OF MODERN CRYPTOGRAPHIC HASH

FUNCTIONS

FERNANDO S*. VIRAY JR.

Pangasinan State University1

skyfher@gmail.com1or: orresponding AuthC

__

ABSTRACT

The need to provide a short yet computationally infeasible message digest as security reference is

tantamount to secured sending of information or files in an unsecured network. Cryptographic hash

functions are one-way functions that yields a 32-character length string that is used to validate and

cross-check that information received is indeed unchanged when it travelled in an unsafe

communication channel. In this paper, the researchers evaluated the two most common modern

cryptographic hash functions, Message Digest number 5 (MD5) and Secure Hash Algorithm

number 1 (SHA-1) in terms of performance and computational hardness.

Keywords : modern cryptographic hash function, Message Digest 5 (MD5), Secure Hash Algorithm

(SHA-1)

INTRODUCTION

Cryptography prior to the modern age has been synonymous with encryption - the conversion of

information from a readable state to garbled texts which are apparently nonsense. Its study,

cryptology, is aimed heavily towards techniques for secure communication[1]. However, as

cryptographers and cryptologists invented several ways to encrypt information, loopholes are

observed and are most of the times affected by how the message was delivered and by what channel

is used to arrive to the purported receiver of the information. Thus, a wider scope of cryptography

towards secure communication which established the fact that along the channel of communication

is the presence of third parties who are referred to by Ronal L. Rivest in 1990 as “adversaries.” The

cryptography literature often uses Alice ("A") for the sender, Bob ("B") for the intended recipient,

and Eve ("eavesdropper") for the adversary [2].

The consideration of the channel as an integral factor in a secure communication brought the rise of

modern cryptography which utilizes the combination of different cryptographic techniques in

encrypting information and securely delivering the encrypted message to the receiver. These

techniques are called cryptosystems. It is a suite of cryptographic algorithms needed to implement a

particular security services which fall within the central aspects of modern cryptography - data

confidentiality, data integrity, authentication, and non-repudiation[3].

http://www.scientiaresearchlibrary.com/
http://www.scientiaresearchlibrary.com/arhcive.php
mailto:1skyfher@gmail.com

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

2

Typically, a cryptosystem is being consisted of three algorithms: one for key generation, one for

encryption, and one for decryption[4]. The data confidentiality aspect points to the encryption and

decryption algorithms while the aspects data integrity, authentication and non-repudiation is

counter-parted by the key generation algorithm. Within these three algorithms lies an algorithm that

also supports the aspects of data integrity and authentication requirements. This is the hash function

which helps in mapping data during encryption and decryption[5] and the cryptographic hash

function which provides cryptographic hash codes or message digest that can be used for

authentication and as basis for data integrity[6].

According to Stephen Northcutt (2002), there are three types of cryptography algorithms: secret

key, public key, and hash functions[7]. However, unlike secret key and public key algorithms, hash

functions, which are also called message digests or one-way encryption, do not implement a key,

instead, a fixed-length hash value is computed based on the plaintext that makes it impossible [or

computationally infeasible[8]] for either the contents or length of the plaintext to be recovered. The

hash value provides a digital fingerprint of a message's contents, which ensures that the message

has not been altered by an intruder, virus, or by other means[9].

There is a long list of cryptographic hash functions. Two of the most commonly used cryptographic

hash functions are MD5 and SHA-1. MD5 or Message Digest number 5 was invented by Ron

Rivest in 1992 as an improved version of MD4 he created in 1990. Meanwhile, in 1993, the

National Security Agency published a hash function very similar to MD5, called the Secure Hash

Algorithm (SHA). Then in 1995, citing a newly discovered weakness that it refused to elaborate on,

the NSA made a change to SHA. The new algorithm was called SHA-1. Today, the most popular

hash function is SHA-1[8], with MD5 still being used.

To understand the viability of using hash functions to verify integrity and source of information, one

must first examine the properties and origin of the basic hash function. The objective of this study is

to analyze the algorithms, strengths and weaknesses of the 2 most commonly used modern

cryptographic hash functions: MD5 and SHA-1. It shall evaluate the performance of the compared

hash functions in terms of their speed to generate hash value over a relative file size. It shall also

gather data on how it would be computationally infeasible to Brute Force the hash algorithms. By

examining the history and security available in each function, it aims to benefit application and web

developers to determine which timely algorithm is best suited for his software development

endeavors.

MATERIALS AND METHOD

Hash Functions: An Overview

Hash functions are mathematical functions that take in a relatively arbitrary amount of data as an

input, also called as the hash key, pre-image or message, and produce an output of fixed size which

is also called the hash, hash value, hash code, or message digest. The output is always the same

when given the same input. Any piece of data can be used as a hash key such as character strings,

binary files, website address, or computer network packets, and subject it to a hash function to

produce fixed length hash value.

If two different hash key produces the same hash value, such occurrence is called a collision which

is avoided, as much as possible, in order to attain a one-is-to-one relationship of hash key and hash

value – that is every hash key must have and must be linked its own unique hash value.

If a hash function produces hash values according to a specified fixed length string format or

pattern, such hash function is usually used as a hash table. However, if it assigns a fixed length

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

3

random string, such hash function is called cryptographic hash function which is usually used for

data integrity evaluation and data authentication by taking into consideration that since different

hash keys almost always produce different hash values when subjected to a hash function, if a hash

value of an input hash key changes, then the input hash key itself has changed.

Properties of Hash Functions

The first main property of a hash function, which all hash functions have, is one-wayness or being a

one-way function[4]. Given knowledge of an input hash key x, we can easily compute the hash value

h(x) using the hash function; but it is very difficult given the hash value h(x) to find a corresponding

pre-image x if one is not already known. As the output is random, the best an attacker who wants to

invert a random function can do is to keep on feeding in more inputs until he gets lucky. This

property provides computational hardness to a hash function.

A second property of hash functions is that the hash value h(x) will not give any information at all

about even a part of the input hash key x[2]. To make a backward hash attack more difficult, some

hash functions use a secret key or salt k through concatenation and computing h(x, k)[8]. This

ensures that an attacker will have a hard time identifying which of his decrypted hash value is

actually the real hash key as it contains some characters which is not originally part of the hash key.

A third property of hash functions is the difficulty to find collisions[9] by taking into considerations

that different messages M1 ≠ M2 with h(M1)=h(M2). If an attacker finds a shortcut attack, it only

means that the hash function is not really using a good pseudorandom sub-function within it,

otherwise, the best way for an opponent of finding a collision is to collect a large set of messages Mi

and their corresponding hash values h(Mi), sort the hashes, and look for a match. A hash function

with an n-bit number output would have 2n possible hash values, as such, the number of hashes an

attacker will need to compute before he can find a match will be about 2n/2 hash values. This fact is

of major significance in computer security.

Popular Cryptographic Hash Functions

There are two primarily cryptographic hash functions in use today, MD5 and SHA-1[9].

MD5 Hash Function

MD5 stands for “Message Digest 5” as it is the fifth revision of a message digest algorithm devised

by Ron L. Rivest of RSA Laboratories. The early revisions of this algorithm were published prior to

1989, and the most recent revision of the algorithm was published in 1991. It has an arbitrary input

length and produces a 128-bit digest. Although weaknesses have been found in the algorithm[8],

there has never been a published collision as of this writing.

In the MD5 algorithm, the input message is broken up into chunks of 512-bit blocks (sixteen 32-bit

words) and being padded so that each chunk’s length is divisible by 512. Each message block is

processed using the main MD5 Function (F) which operates on a 128-bit state, divided into four 32-

bit words, denoted A, B, C, and D. Function F is composed of four similar stages called rounds.

Each round is composed of 16 similar operations based on a non-linear function F, modular

addition, and left rotation. Figure 1 illustrates the operations in a round.

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

4

Figure 1. The Main MD5 Function.

SHA1 Hash Function

SHA1 stands for “Secure Hash Algorithm 1”, it is the first revision of a hash algorithm developed

by the National Security Agency of the United States of America. The algorithm was first published

in 1995. SHA1 supports messages of any length less than 264 bits as input, and produces a 160-bit

digest. In the unlikely event that one wishes to compute the digest of a message larger than 264 bits

in length (over 2 billion Gigabytes of information), the simplest solution would be to divide the

large messages into smaller messages. There are no known weaknesses in SHA1, and it is generally

considered the more secure of the two algorithms. There are also variations of SHA1 which produce

longer digests, SHA-256, SHA-512. They produce digests of 256 bits and 512 bits, respectively[10].

Figure 2 shows one iteration within the SHA1 compression function which has 5 chunks of 32-bit

words (as compared to MD5 which has only 4) where the first 2 chunks will undergo bit rotation,

the 3 middle chunks shall be processed under a varying non-linear function, and the last chunk,

together with the outputs of first 5 chunks, will undergo addition modulo 232
. Chunk swapping (first

to next chunk and last to first chunk) will be processed in the last stage.

Figure 2. The SHA1 Algorithm.

The SHA1 and MD5 algorithms are considered secure because there are no known techniques to

find collisions, except via brute force. In a brute force attack random inputs are tried, storing the

results until a collision is found. If we do not limit ourselves to finding a collision with a specific

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

5

message, one can expect to find a collision within 2n/2 computations, where n is the number of bits

in the digest. This is commonly known as the birthday attack[11]. This means that an attacker would

need to compute the digests of approximately 264 messages to find a collision in the MD5 function,

and approximately 280 computations to find a collision in SHA1. Note that SHA1 may be more

secure than MD5, but it is more costly to compute a message digest using SHA1 than MD5. If one

is expressing security concerns SHA1 would be the function of choice, however, if speed is an issue

it is likely that MD5 would result in faster performance, and would likely still be secure enough for

most applications. In August 2001, a complex computing grid theorized by IBM was believed to be

able to achieve 13.6 trillion calculations per second, which would make it one of the most powerful

computers known.

Even at this rate, assuming one computation of a digest per super computer calculation, it would

take over 2,800 years to find a collision in SHA1. In the unlikely event that a collision was ever

found, security minded individuals could just use one of the SHA algorithms that produce larger

outputs; these algorithms would require an even greater amount of time to find collisions in.

Comparative Analysis Setup

The evaluations in this paper were conducted in to two ways: performance evaluation and

computational hardness evaluation. The performance evaluation assessed the speed of the two

cryptographic algorithms in producing hash values over a set of files with varying file sizes using a

VB.NET tool created by the researchers using Microsoft Visual Studio 2010. Meanwhile, the

computational hardness evaluation calculated the difficulty to decipher each subject algorithm using

Brute Force process, a cryptanalytic attack that guesses all possible combinations of characters or

keys for a specified string length[12].

To simulate the performance of MD5 and SHA-1, this study used the available security and string

classes of Microsoft VB.NET under Microsoft Visual Studio 2010 Integrated Development

Environment (IDE). String classes are used to generate random string and for string comparison.

The ASCII character set was selected as the character encoding of the output hash values which

uses 1 byte per character. The simulation tool is compiled to support version 4.0 of the Microsoft

.NET framework. The implementation is thoroughly tested and is optimized to give the maximum

performance for the two cryptographic hash functions.

Table 1 displays the input parameters used in this study in evaluating the performance of each

cryptographic hash algorithm over a set of digital computer files.

Table 1. Key or Salt input parameters of compared cryptographic hash functions in evaluating

speed of producing cryptographic hash values over computer files.

Key/Salt Parameters for String Evaluation

Cryptographic

Hash Function
Key / Salt

MD5 FHERn@ndosvir@yjr808

SHA-1 FHERn@ndosvir@yjr808

To evaluate the computational hardness of each hash algorithm, this paper utilized an online Brute

Force Calculator (calc.opensecurityresearch.com) and set the following as input parameters:

password length: 7 to 20 characters long

character set : a..z, A..Z, 0 to 9, and !@#$%^&*()-

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

6

_+=~`[]{} |\:;"'<>,.?

Table 2 details Keys Per Second (kps) used in this study to evaluate the computational hardness of

each subject cryptographic hash algorithm aside from the input parameters stated above. The values

are determined according to the speed of the computer unit used by openresearch.com’s online

Brute Force Calculator.

Keys per Second Input Parameters

Cryptographic

Hash Function

Keys per

Second (kps)

MD5 7,508,000

SHA-1 7,107,000

Table 2. Keys per Second input parameters used in utilizing opensearch.com’s online Brute Force

Calculator to evaluate computational hardness of each compared hash algorithm.

Comparative Analysis Methodology

The specifications of the computer unit used in the simulations are as follows:

Processor : 2.20GHz Quad Core Intel Core i3

Memory : 4 Gigabytes

Operating System : Windows 8 64-bit

The default settings in VB.NET of Microsoft Visual Studio 2010 were used as parameters in

compiling the simulation program. To assure that the results are consistent, the simulations are

performed for several times. The following image, Figure 3, shows the screenshot of the actual

VB.NET tool created.

Figure 3. Screenshot of the actual VB.NET tool created by the researchers using MS Visual Studio

2010 where MD5 and SHA-1 cryptographic hash algorithms were implemented using the IDE’s

built-in Cryptography classes.

The evaluation of the performance of each compared cryptographic hash function in terms of speed,

a set of random files of varying sizes (from 1 Megabyte to 1 Gigabyte) were subjected to each

algorithm’s hash function and recorded the time in ticks since the function easily finished even

before a millisecond has elapsed with the specifications of the computer used. A single tick

represents one ten-millionth of a second or one hundred nanoseconds, this means that there are

10,000 ticks in a millisecond, or 10 million ticks in a second[13].

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

7

Since MS-Visual Studio 2010 already has Cryptography classes where MD5 and SHA-1

implementation are included, the following function pseudo code was used as basis of the VB.NET

tool created by the researchers to get the exact time how fast each hash function generates hash

value after subjecting a file to the hash function.

Function GetHashGenerationTime(sFile() as Byte,

password as String) as Long Integer;

 begin

 timeStart = GetCurrentTimeInTicks();

 hashValue = CryptClass.GetHash(sFile,password);

 timeEnd = GetCurrentTimeInTicks();

 timeElapsed = timeEnd – timeStart;

 return timeElapsed;

 end

To convert the number of ticks covered by the hash function in generating hash values into seconds,

the following formula is used:

To evaluate the computational hardness of each algorithm by using Brute Force, the researchers

used an online Brute Force Calculator (calc.opensecurityresearch.com) which calculates the time it

would take in providing all possible keys or character combinations taking into consideration the

password length, keys per second and character set as input parameters. A 3.4GHz Intel Core i7-

2600K computer was used by the online Brute Force Calculator and calculated the projected

computation time with the following formula:

 lc

tyears = --------

 k

where:

t = the projected Brute Force time in years

l = length of password

c = number of characters in the character set

k = the keys per year capability of a computer

Because k is usually expressed in keys per second (kps), below is the formula used in converting

keys per second to keys per year:

or

 timeticks

-------------------------= secondstime

 10,000 ticks/second

kyears = kseconds x 60sec/min x 60min/hr x 24hr/day x 365.25days/yr

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

8

kyears = kseconds x 31,557,600seconds/year

RESULTS AND DISCUSSION

Analysis Results

Figure 4 below shows the results of the performance evaluation of MD5 and SHA-1 in terms of

how long the algorithm generated a cryptographic hash value of the random files. It exhibits the

superiority of MD5 algorithm and how it outperforms SHA-1 in terms of processing time especially

on relatively large files. It also shows that SHA-1 consumes more computing resources as input file

size becomes relatively larger.

Figure 4. Performance Results of MD5 and SHA-1 algorithms in terms of Hash Value Generation.

Table 3 displays the Brute Force results of MD5 and SHA-1 using the online Brute Force Calculator

of opensecurityresearch.com. It suggests that passwords should be at least 8 characters long in order

to provide hardness in brute forcing. It also indicates that a Brute Force attack on SHA-1 algorithm

would take a huge amount of time and processing power as compared to MD5.

Brute Forcing MD5 and SHA-1

(in years)

Password

Length MD5 SHA-1

7 0.296499657 0.31297186

8 28.29924502 29.89773507

9 2688.370625 2840.057653

10 255395.269 269805.4997

11 24262550.62 25631522.45

12 2304942309 2434994633

13 2.1897E+11 2.31324E+11

14 2.08021E+13 2.19758E+13

15 1.9762E+15 2.0877E+15

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

9

16 1.87739E+17 1.98332E+17

17 1.78352E+19 1.88415E+19

18 1.69434E+21 1.78994E+21

19 1.60963E+23 1.70045E+23

20 1.52915E+25 1.61543E+25

Table 3. Projected Brute Force attack time of MD5 and SHA-1 algorithms using

openresearch.com’s Online Brute Force Calculator.

CONCLUSION

The Message Digest number 5 (MD5) algorithm has a better performance in terms of speed in

generating hash value as compared to Secure Hash Algorithm 1 (SHA-1). However, SHA-1 has

more computational hardness under a Brute Force attack as compared to the MD5 algorithm.

Results also prove that it would take a very long time before the two cryptographic hash algorithms

can be Brute Forced or it would need a huge number of computers which will perform simultaneous

parallel brute forcing before the compared algorithms can be cracked.

REFERENCE

[1] Liddell, Henry George; Scott, Robert; Jones, Henry Stuart; McKenzie, Roderick (1984). A

Greek-English Lexicon. Oxford University Press.

[2] Biggs, Norman (2008). Codes: An introduction to Information Communication and

Cryptography. Springer. p. 171.

[3] Menezes, A. J.; van Oorschot, P. C.; Vanstone, S. A. Handbook of Applied Cryptography. ISBN

0-8493-8523-7. Archived from the original on 7 March 2005.

[4] Buchmann, Johannes A. (2004) Introduction to Cryptography (2nd ed.). Springer. ISBN 0-387-

20756-2.

[5] Konheim, Alan (2010). "7. HASHING FOR STORAGE: DATA MANAGEMENT". Hashing in

Computer Science: Fifty Years of Slicing and Dicing. Wiley-Interscience. ISBN 9780470344736.

[6] Sedgewick, Robert (2002). "14. Hashing". Algorithms in Java (3 ed.). Addison Wesley. ISBN

978-0201361209.

[7] Northcutt, Stephen (2002). Network Intrusion Detection (3rd ed.). Sams Publishing. ISBN 978-

0735712652

[8] Schneier, Bruce (2004). "Cryptanalysis of MD5 and SHA: Time for a New Standard".

Computerworld.

[9] Silva, John .Edward. (2003). An Overview of Cryptographic Hash Functions and Their Uses.

SANS Institute InfoSec Reading Room. SANS Institute.

[10] Eastlake, Donald E. and Jones Paul E. (2001). US Secure Hash Algorithm (SHA1), Internet

RFC 3174 September 2001.

[11] Halevi, Shai and Krawczyk, Hugo (2006). Strengthening Digital Signatures via Randomized

Hashing. IBM T.J. Watson Research Center, Yorktown Heights, New York.

[12] Paar, Christof; Pelzl, Jan; Preneel, Bart (2010). Understanding Cryptography: A Textbook for

Students and Practitioners. Springer. ISBN 3-642-04100-0.

FERNANDO S et al J. of Eng. & Techn. Res., 2019, 7(1):1:10

10

[13] Microsoft Developer Network. Article: DateTime.Ticks Property.

https://msdn.microsoft.com/en-us/library/ system.datetime.ticks(v=vs.110).aspx, accessed 2017-03-

09.

