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ABSTRACT

An analytical study is presented to investigate the heat transfer characteristic of boundary layer
flow over a linearly shrinking permeable sheet in the presence of radiation and heat source/sink.
The governing boundary layer equations are reduced into ordinary differential equations by a
similarity transformation. The reduced equations are then solved analytically for power-law
surface temperature boundary conditions. The dual temperature is found to exist for any values of
heat sink parameter for suction parameter s> 2. But in heat source case, the dual temperature may
be obtained for s > 2 subject to the condition « = 2,/1/DP», where /1 is the heat source/sink
parameter, Pr the Prandtl number, D the parameter related to radiation and « is the real positive
root satisfying a+1/« == But for physically valid flow and heat transfer real parameters, it
difficult to satisfy the above condition for both the root & The effects of radiation parameter,
Prandtl number, heat source/sink parameter, the wall mass transfer parameter on the temperature
distribution are studied.

Keywords. Shrinking sheet, suction, boundary layer flowatHgansfer, Thermal radiation, heat
source/sink, Exact solution.

INTRODUCTION

The boundary layer flow and heat transfer overratadting surface is important in view of its
application in several engineering processes. Simegioneering work of Sakiadis [1,2], various
aspects of the problem were investigated by marlioas [3-12]. On the other hand, a little is
known about the fluid flow and heat transfer ovehanking sheet. In this type of flow, the flusl i
shrinked towards a slot. In order to make the fideady, some external force is needed to confine
the vorticity inside the boundary layer. Suctiortte sheet may sometimes play an important role
in confining the vorticity inside the boundary lay&Vvang [13] first proposed the flow over a
shrinking sheet while working on the flow of a liddilm over an unsteady stretching sheet. Later,
Miklavcic and Wang [14] obtained an analytical smo for steady viscous hydrodynamic flow
over a permeable shrinking sheet. After that Hagaal. [15] obtained the analytical solution of
magneto-hydrodynamic flow of a second grade flwéroa shrinking sheet. Nadeem and Awais
[16] studied thin film flow of an unsteady shringirsheet through porous medium with variable
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viscosity. Stagnation flow towards a shrinking sheas studied by Wang [17]. Viscous flow over
an unsteady shrinking sheet with mass transfersivatied by Fang and Zhang [18]. Ali et al. [19]
studied magnetohydrodynamics viscous flow and treaisfer induced by a permeable shrinking
sheet with prescribed surface heat flux. Sajid ldagat [20] applied homotopy analysis method for
the MHD viscous flow due to a shrinking sheet. Fand Zhang [21] recently investigated the heat
transfer characteristics of the shrinking sheeblamm with a linear velocity. The effect of chemical
reaction, heat and mass transfer on magnetohydanaigrnviscous flow due to a shrinking sheet in
the presence of suction was studied by Muhaiminalet[22]. Bhattacharyya [23] studied
numerically the effects of heat source/sink on MH®v and heat transfer over a shrinking sheet
with mass suction. Numerical method cannot capalirehe physics of shrinking sheet problem
always. That is why there is a need to study thpeblems analytically. Midya [24] studied the
magnetohydrodynamic viscous flow and heat transfear a linearly shrinking permeable sheet
without heat source/sink. Recently, Midya [25] otéa a closed form analytical solution for the
distribution of heat in a MHD boundary layer flowes a non-permeable shrinking sheet with heat
source/sink.

In this paper, the effect of thermal radiation asuibdary layer heat transfer of the flow over a
linearly shrinking permeable sheet in the presesfceeat source/sink is investigated analytically
for prescribed power-law wall temperature boundeaondition. With the use of a similarity
transformation the governing partial differenti@juations are reduced into ordinary differential
equations which are then solved exactly. Tempegadistributions are presented and discussed for
various flow parameters.

MATERIALSAND METHODS

MATHEMATICAL FORMULATION

Let us consider a steady two-dimensional laminaw fbf a viscous incompressible fluid over a
continuously shrinking sheet. x-axis is choserhm direction opposite the sheet motion and the y-
axis is taken perpendicular to it. The shrinkingethvelocity is proportional to the distance i.e=u
-ax, (a>0) and the wall mass transfer velocitys with w, > 0 for injection and y < O
corresponds to suction .

The governing boundary layer equations for momerdnchenergy can be written as

du v _
E-I_a_y_u ) (1)
Ju du _ _d7u
UtV Vo (2)
uﬂ-l- E_T_LE_T_L‘;j_I_i{T_L:] (3)

dx v.i‘_r - fip dy gcp @y fcp
where u and v are the components of velocity rdsyg in the x and y directions, T is the
temperaturex is the thermal conductivity, ,@s the specific heap is the fluid density (assumed
constant),v (= w/p ) is the coefficient of fluid viscosity, ds the radiative heat flux,.Tis the
temperature far from the sheet, Q is the volumetate of heat generation / absorption.

The boundary conditions for the velocity componemtd temperature are given by
U=—ax, V="0p IT=T, aty=0 (4)
and
u—0, v— 0 T—=T, aty—w (5)
where T, is the wall temperature.
4y ATt

Now, Rosseland's approximation for radiation gi\tf?rs:—(;] o where ¢ is the Stefan-

Boltzmann constant, k1 is the Rosseland mean ati@orpoefficient(see Brewster [26]). It is
assumed that the temperature variation within tber fis such that T may be expanded in a
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Taylor's series. Expanding’ Bbout T, and neglecting higher order terms, we haleBT.° T -
3T.%
Therefore, Eq.(3) reduces to

gr | ar w 3'r | 1eeTE AT

U= tr—=— +L -1 (6)

dx 8y  popdy? Ty pop A¥T T pep
SOLUTION OF THE PROBLEM

Equations (1-2) along with the boundary conditigh$) admit self-similar solutions of the form
u=axf'@), v=—vavflp), n=y ﬂ'% (7)

where f is the dimensionless stream functionaglthe similarity variable. Substituting thesesEq
(2) become

aif a3F  rafyt
=) =0 (8)
The boundary conditions are
F0)=-1, fl0) =5, and f'(m) =0 (9)

wheres = —i, /o IS @ Non-dimensional constant which determinesttanspiration rate of the
surface, with s > 0 for suction and s < 0 corresisdo injection.

There is an analytical solution (see Fang and zhadg¢) for the equation with the boundary
conditions given by

fl=a+ ia?"“’, (10)
wherea = f{w) =f"(01 anda (>0) can be obtained by solving the equation
t+s =5 (11)
r

It is, therefore, seen that there are two solutimmghis equation for any s > 2 and there is one
solution for s = 2. No solution exists for s < hefe is also an algebraically decaying solution as
f{?;l:] = r;+_ﬁ'_5 fors= *\'E

The non-dimensional horizontal velocity componamngiven by

fl ) = - (12)
The shear stress at the wall is denoted,jognd is defined as
Ty = w(Bu/y )y = ,umxﬂ'?f""" 0= .UM_\I"% @ (13)
The skin friction coefficient €at the wall is obtained as
C; = I" = (0 =a (14)

HEAT TRANSFER ANALYSIS

First, we consider power-law surface temperatu®T{Pas surface boundary conditions and then
power-law wall heat flux (PHF) case will be disceds

POWER-LAW SURFACE TEMPERATURE (PST) CASE
In this case the boundary conditions are
T=T,=T.+4 at y=0 (15)
T—T, at y-w (16)
Defining the non-dimensional temperatf(g), Prandtl number Pr and heat source / sink paemet
A as

Bp) === Pr="2 1= aQ
Tow—Toz K Ol
Using Eq. (7), we have from Eq. (6)
dg da af
S 2 +DPrf 4 DPr (ﬂ—pi) 6=10 (17)
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Here D=3R/(3R+4) and R is the thermal radiatiorapweter given by Rek1/40T..>.
The boundary conditions become

600) =1, and 8(c) =0, (18)
Substituting the solution for the momentum transfiee above Eq.(17) reduces to
%+DPT(&+§§'W)E—:+ DPr(d +pe~ Mg =0 (29)
Now, let us introduce a new varialzie %e-‘”’ so that the above equation transforms to
E¥+{1—DPT—E]E—i-l—(ﬂsz?-l—p)ﬂztl §20
The boundary conditions (18) then become
¢(%)=1 and 6(0) =0 (21)

Now, transforming the above equation (20) into tgerit hypergeometric equation, we can obtain
the solution (see Abramowitz and Stegun [27]) gilkgn
8(Z) = (aE/DPr)F #(8 — p.1 + by.E)/#(8 — p.1+ by, DPr/a?). (22)

7 4agl

— . -
where g = (by + ay) /2. ay = DPr, by :_'Jla,_, -~ and @(d,b,x) is the confluent hypergeometric

function of the first kind or Kummer function.

Now, in heat sink i.e. for negative valuesipiy always becomes real because D, Pr@ade all
positive. Therefore we should get two temperatuilps for all A < 0 corresponding to two
exponential solutions for the momentum equation nwise> 2. For s = 2, one temperature
distribution can be obtained for ahy 0.

In heat source caskbecomes positive. Nows lwvill have real value only whes = 2,/i/DFr. Thus,

in heat source case, dual temperature may be ebtaior s > 2 subject to the condition
« = 2,/4/DPr. But for physically valid flow and heat transfeat parameters, it difficult to satisfy
the above condition for both the rantFor s = 2 ané& = 2,/4/pPr, only one temperature profile can
be found in this case.

Therefore,
6(n) = e M #(B — p.1 + by, DPre™*1/a?)/# (8 —p. 1+ by, DPr/ a?). (23)
The dimensionless wall temperature gradi) is obtained as
, oFr ff f-p oy #l1+f-pa+by 0P /a?]
8/ (0) = —ap - T{uau) #ri.?—_rl.1+izu.uDFr-"E:f' ' ()

RESULTSAND DISCUSSION

Some examples showing temperature variations irfltik are presented for certain values of the
controlling parameters. For the mass suction palemse = 3, we have two values af from
Eq.(11) and they are = 2.618 and 0.382. We name= 2.618 andx = 0.382 as first and second
solution respectively. In all the following figurethe continuous lines represent the temperature
distributions for first solution whereas secondusioh is represented by dotted one.

Discussionsfor heat sink case

The dual temperature profiles for different valeéghe radiation parameter R (R = 0.5, 1.0, 1.5)
are depicted in Figure 1(a) for heat sink paramgter -0.3, power-index p = 2 and suction
parameter s = 3. It is seen that in case of tis¢ §olution, the temperature within the fluid is
reduced throughout the boundary layer for increpsialues of radiation parameter R. For the
second solution, it is enhanced for increasingeslf radiation parameter near the shrinking sheet.
It is also observed that the boundary layer thiskrfer second solution is much higher than that of
the first solution for fixed values @fnear the shrinking sheet. At a large distance fileersheet the
temperature takes its limiting value w1
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Next, the temperature profiles for different valwéthe Prandtl number Pr (Pr = 0.5, 1.0, 1.5) are
depicted in Figure 1(b) . The other parametersRare0.9, s = 3¢ = 2.618, 0.318)A = -0.3 and
power index p = 1. It is seen that the increaséP@ndtl number results in the decrease of
temperature distribution. The increase of Prandthiber means slow rate of thermal diffusion.
Because of reduced thermal conductivity, there ddnd a thinning of the thermal boundary layer
and this leads to the decrease in the temperature.

The dual temperature profiles for different valoéseat sink parameter(A = -0.1, -0.3 and -0.5)
are depicted in Figure 1(c). Here mass suctionmpater s = 3, Pr=0.9, R=0.7and p = 1. The
figure reveals that the temperature within thedfldecreases for the increasing values heat sink
parametei. This fact is usual because of the fact that bBeatgy is absorbed in this case. Also it is
to be noted that the boundary layer thicknessdoosd solution is much higher than that of thé firs
solution for fixed values ofy near the shrinking sheet. The temperature ovetsiothe wall is
observed in the second solution for -0.1.

Figure 1(d) represents the dual temperature digiobs for various values the temperature power
indexp (p=0, 1, 2)withs=3,=-0.5, R =0.7 and Pr = 0.9. It is noticed frtra figure that the

temperature within the fluid increases for the éasing values of power index p from 0 to 2 and
this increase in temperature is very small for firgt solution compared to the second solution.

We shall now concentrate on the temperature digtab for varying values of suction parameter s
keeping other parameters fixed at R = 0.6, Pr 02 -0.2 and power index p = 0 and this is
shown in Figure 1(e). We notice that the effecswdtion parameter s is to decrease the temperature
in the boundary layer for both the solutions.
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Figure 1{z)} Vanation of temperatre for several vales Figue 1{b) Dual temperatwe profiles for several
of Reith==3, Pr=0% L=-03 andp=1. vahies of Proth =3, E=08 =03 and p=1.
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Figure 1(c) Variation of temperature for several values _
of i withs=3.Pr=09. R=07andp=1 Figure 1(d) Dual temperature profiles for several

values of pwiths =3, Pr=09. A=-05and R=0.7.
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Figure 1(e) Dual temperature profiles for several values of s with E=0.6, Pr=09, . =-02 andp=10.

Discussionsfor heat source case

Now we study the heat source case. We have alssssgtythat in heat source case, dual temperature
distribution corresponding to the two exponentiaugon exists for s > 2 wher = 2,/1/DPr iS
satisfied. Infact, for physically valid flow and dietransfer real parameters, it difficult to satidfe
above condition for both the roat When for s = 3, we havwe = 2.618 and 0.318. In the second
solution the value of is small. Therefore, in this case, the conditica 2,/1/DpPr is satisfied only
when DPr is very large and heat source parameteoismall; otherwise the above condition will
not be satisfied for the second solution. Thus,heat source case, we study temperature
distribution for first solution only.

First of all, the influence of radiation paramekeon the temperature profiles for first solution is
presented in Figure 2(a) for Pr = 0.9, s 50.3; 0.3 and p = 2. It is observed that increasing in
radiation parameter R is to decrease temperaturenvthe boundary layer. This can be explained
by the fact that the increase of radiation paramtémplies the release of heat energy from the
flow region by means of radiation and thereby terajpee is decreased within the boundary layer
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We shall now concentrate on the temperature digtab for first solution ¢ = 2.618) for different
values of the Prandtl number Pr and it is showRigure 2(b). The other parameters are R = 0.9, s
=3,A=0.3and p = 1. Itis seen that the increasBrahdtl number results in the decrease of
temperature distribution throughout the boundageiavhen heat source is present. Actually, the
increase of Prandtl number means slow rate of takerdiffusion. Because of reduced
thermal conductivity, there would be a thinning bdary layer and this leads to decrease in the
temperature in the flow field.

The temperature profiles for first solutiom=£ 2.618) are depicted in Figure 2(c) for differealues

of the heat source parametgr§. = 0.1, 0.3, 0.5). Here the radiation parametéaken as R = 0.7,
s=3,pr=0.9 and p = 1. It is seen that the sraipire within the fluid is increased\is increased.
This is logical because internal heat energy ewmsgesults in an increase of heat transfer close to
the shrinking sheet.

Now, we shall draw our attention to the effectstefmperature distribution when the initial
temperature is varied over the sheet. The tempergofiles for different values of power-law
index p are plotted in Figure 2(d) for s =A37 0.5, Pr = 0.9 and R = 0.7. It is observed from t
figure that the temperature is increased very glowith the increase of power-law index p.

Finally, the temperature profiles for various vawé suction parameter s is presented in Figure 2(e
for fixed Pr=0.91=0.2, R=0.6 and p = 0 (in case of first solntio= 2.618). The figure reflects
that the value of temperature at a particyl&s reduced with increasing values of suction pa&tam

s. Due to increase in the suction parameter syaloeity boundary layer thickness becomes thinner
and thinner and consequently decrease temperattima he fluid.

_ Eizsv selubien

fir=e =solutisn

A= 0L 0 205

B =-0.5,1.0,1.5
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z 4 [ & 10 1z

Figure 2{c) Variation of temperature for several values
Figure 2(a) Vartation of temperature for several values of b withs=3 (0=2618).Pr=09. R=07andp=1.
of Rwiths=3, Pr=09 L=03andp=2.
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Figure 2{d) Temperature profiles for several values of

Figure 2(b) Temperature profiles for several values of - _
pwiths=3(¢=2618).Pr=09,,=05and R=0.7.
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Figure 2{e) Vanation of temperature for several values of s with R = 06. Pr = 09. L = 02 and p = 0.

CONCLUSION

In conclusion, heat transfer over a linearly shrnigkpermeable surface with mass suction is
investigated analytically in the presence of thdrmaaliation and heat source/sink. The exact
analytical solutions of the boundary layer energpation are obtained for power-law wall
temperature boundary condition. The effects ofatain parameter R, Prandtl number Pr, heat
source or sink paramet@r the wall mass transfer parameter s and the pawdax p on the
temperature distribution are studied. In heat sime, dual temperature distribution is obtained for
any s > 2, where s is the suction parameter. Baeat source case, dual temperature profiles may
be obtained for s > 2 with the conditier 2,/1/DFr. But, for physically valid flow and heat
transfer real parameters, it difficult to satisfyetabove condition for both the roat The
temperature overshoot at the wall is observed foromes  cases.
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