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ABSTRACT 
An analytical study is presented to investigate the heat transfer characteristic of boundary layer 
flow over a linearly shrinking permeable sheet in the presence of radiation and heat source/sink. 
The governing boundary layer equations are reduced into ordinary differential equations by a 
similarity transformation. The reduced equations are then solved analytically for power-law 
surface temperature boundary conditions. The dual temperature is found to exist for any values of 
heat sink parameter for suction parameter s > 2. But in heat source case, the dual temperature may 
be obtained for s > 2 subject to the condition , where λ is the heat source/sink 
parameter, Pr the Prandtl number, D the parameter related to radiation and α is the real positive 
root satisfying α  But for physically valid flow and heat transfer real parameters, it 
difficult to satisfy the above condition for both the root   The effects of radiation parameter, 
Prandtl number, heat source/sink parameter, the wall mass transfer parameter on the temperature 
distribution are studied.                                                                                                                           
                                                                                                                                                   
Keywords: Shrinking sheet, suction, boundary layer flow, Heat transfer, Thermal radiation, heat 
source/sink, Exact solution. 
.                                          
 

INTRODUCTION 
  

The boundary layer flow and heat transfer over a stretching surface is important in view of its 
application in several engineering processes. Since the pioneering work of Sakiadis [1,2], various 
aspects of the problem were investigated by many authors [3-12]. On the other hand, a little is 
known about the fluid flow and heat transfer over a shrinking sheet. In this type of flow, the fluid is 
shrinked towards a slot. In order to make the flow steady, some external force is needed to confine 
the vorticity inside the boundary layer. Suction at the sheet may sometimes play an important role 
in confining the vorticity inside the boundary layer. Wang [13] first proposed the flow over a 
shrinking sheet while working on the flow of a liquid film over an unsteady stretching sheet. Later, 
Miklavcic and Wang [14] obtained an analytical solution for steady viscous hydrodynamic flow 
over a permeable shrinking sheet. After that Hayat et al. [15] obtained the analytical solution of 
magneto-hydrodynamic flow of a second grade fluid over a shrinking sheet. Nadeem and Awais 
[16] studied thin film flow of an unsteady shrinking sheet through porous medium with variable 



 
Chandaneswar Midya et al                                           J. of Eng. & Techn. Res., 2014, 2(5):47:56 

 

48 
 

viscosity. Stagnation flow towards a shrinking sheet was studied by Wang [17]. Viscous flow over 
an unsteady shrinking sheet with mass transfer was studied by Fang and Zhang [18]. Ali et al. [19] 
studied magnetohydrodynamics viscous flow and heat transfer induced by a permeable shrinking 
sheet with prescribed surface heat flux. Sajid and Hayat [20] applied homotopy analysis method for 
the MHD viscous flow due to a shrinking sheet. Fang and Zhang [21] recently investigated the heat 
transfer characteristics of the shrinking sheet problem with a linear velocity. The effect of chemical 
reaction, heat and mass transfer on magnetohydrodynamic viscous flow due to a shrinking sheet in 
the presence of suction was studied by Muhaimin et al. [22]. Bhattacharyya [23] studied 
numerically the effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet 
with mass suction. Numerical method cannot capture all the physics of shrinking sheet problem 
always. That is why there is a need to study these problems analytically. Midya [24] studied the 
magnetohydrodynamic viscous flow and heat transfer over a linearly shrinking permeable sheet 
without heat source/sink. Recently, Midya [25] obtained a closed form analytical solution for the 
distribution of heat in a MHD boundary layer flow over a non-permeable shrinking sheet with heat 
source/sink.                                                                                                                                              

 
In this paper, the effect of thermal radiation on boundary layer heat transfer of the flow over a 
linearly shrinking permeable sheet in the presence of heat source/sink is investigated analytically 
for prescribed power-law wall temperature boundary condition. With the use of a similarity 
transformation the governing partial differential equations are reduced into ordinary differential 
equations which are then solved exactly. Temperature distributions are presented and discussed for 
various flow parameters.                                                                                                                         

MATERIALS AND METHODS 
  

MATHEMATICAL FORMULATION 
 

Let us consider a steady two-dimensional laminar flow of a viscous incompressible fluid over a 
continuously shrinking sheet. x-axis is chosen in the direction opposite the sheet motion and the y-
axis is taken perpendicular to it. The shrinking sheet velocity is proportional to the distance i.e. uw = 
-ax,  (a>0) and the wall mass transfer  velocity is vw, with vw > 0 for injection and vw < 0 
corresponds to suction .                                                                                                                           
The governing boundary layer equations for momentum and energy can be written as 

                                                                 (1)  

                                                             (2) 

                                        (3) 

where u and v are the components of velocity respectively in the x and y directions, T is the 
temperature, κ is the thermal conductivity,  cp is the specific heat, ρ is the fluid density (assumed 
constant), ν (= µ/ρ ) is the coefficient of fluid viscosity, qr is the radiative heat flux, T∞ is the 
temperature far from the sheet, Q is the volumetric rate of heat generation / absorption.                     

  
The boundary conditions for the velocity components and temperature are given by 

                                               (4) 
and 

                                              (5) 
where Tw is the wall temperature. 
Now, Rosseland's approximation for radiation gives  where σ is the Stefan-

Boltzmann constant, k1 is the Rosseland mean absorption coefficient(see Brewster [26]). It is 
assumed that the temperature variation within the flow is such that T4 may be expanded in a 
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Taylor's series. Expanding T4 about T∞ and neglecting higher order terms, we have T4 = 4T∞
3 T -

3T∞
4.                                                                                                                                                        

Therefore, Eq.(3) reduces to 
                                             (6) 

 
SOLUTION OF THE PROBLEM 

 
Equations (1-2) along with the boundary conditions (4-5) admit self-similar solutions of the form 

                                                (7) 

where f is the dimensionless stream function and � is the similarity variable. Substituting these, Eqs. 
(2) become                                                                                                                                               

                                                                         (8) 

The boundary conditions are 
                                                    (9) 

where   is a non-dimensional constant which determines the transpiration rate of the 
surface, with s > 0 for suction and s < 0 corresponds to injection.                                                         
There is an analytical solution (see Fang and Zhang [21]) for the equation with the boundary 
conditions given by                                                                                                                                  

                                                                                 (10) 
where   and α (>0) can be obtained by solving the equation 

                                                                                            (11) 
It is, therefore, seen that there are two solutions for this equation for any s > 2 and there is one 
solution for s = 2. No solution exists for s < 2. There is also an algebraically decaying solution as 

 for .                                                                                                                              

The non-dimensional horizontal velocity component is given by 
                                                                                     (12) 

The shear stress at the wall is denoted by τw and is defined as 

                                          (13) 

The skin friction coefficient Cf at the wall is obtained as 
                                                                      (14) 

 
HEAT TRANSFER ANALYSIS 

 
First, we consider power-law surface temperature (PST) as surface boundary conditions and then 
power-law wall heat flux (PHF) case will be discussed.                                                                         

 
POWER-LAW SURFACE TEMPERATURE (PST) CASE 
In this case the boundary conditions are 

      at    y = 0                                                              (15) 
T⟶T∞     at  y⟶∞                                                                                 (16) 

Defining the non-dimensional temperature θ(�), Prandtl number Pr and heat source / sink parameter 
λ as                                                                                                                                                           

 

Using Eq. (7), we have from Eq. (6) 
                                               (17) 



 
Chandaneswar Midya et al                                           J. of Eng. & Techn. Res., 2014, 2(5):47:56 

 

50 
 

Here D=3R/(3R+4) and R is the thermal radiation parameter given by R=κk1/4�T∞
3. 

The boundary conditions become 
                                                               (18) 

Substituting the solution for the momentum transport the above Eq.(17) reduces to 
                                          (19) 

Now, let us introduce a new variable  so that the above equation transforms to 

                                                (20) 

The boundary conditions (18) then become 
                                                                       (21) 

Now, transforming the above equation (20) into confluent hypergeometric equation, we can obtain 
the solution (see Abramowitz and Stegun [27]) given by                                                                       

                         (22) 

where   and �(a/,b/,x) is the confluent hypergeometric 

function of the first kind or Kummer function.                                                                                       
 

Now, in heat sink i.e. for negative values of λ, b0 always becomes real because D, Pr and α are all 
positive. Therefore we should get two temperature profiles for all λ < 0 corresponding to two 
exponential solutions for the momentum equation when s > 2. For s = 2, one temperature 
distribution can be obtained for any λ < 0.                                                                                              

 
In heat source case, λ becomes positive. Now b0 will have real value only when . Thus, 
in heat source case, dual temperature may be obtained for s > 2 subject to the condition 

. But for physically valid flow and heat transfer real parameters, it difficult to satisfy 
the above condition for both the root  For s = 2 and , only one temperature profile can 
be found in this case.                                                                                                                               
Therefore, 

                           (23) 
The dimensionless wall temperature gradient θ

/(0) is obtained as 
.                                          (24) 

 
RESULTS AND DISCUSSION 

Some examples showing temperature variations in the fluid are presented for certain values of the 
controlling parameters. For the mass suction parameter s = 3, we have two values of α  from 
Eq.(11) and they are α = 2.618 and 0.382. We name α = 2.618 and α = 0.382 as first and second 
solution respectively. In all the following figures, the continuous lines represent the temperature 
distributions for first solution whereas second solution is represented by dotted one.                           

 
Discussions for heat sink case 
 The dual temperature profiles for different values of the radiation parameter R (R = 0.5, 1.0, 1.5) 
are depicted in Figure 1(a) for heat sink parameter λ = -0.3, power-index p = 2 and suction 
parameter s = 3. It is seen that in case of the first solution, the temperature within the fluid is 
reduced throughout the boundary layer for increasing values of radiation parameter R. For the 
second solution, it is enhanced for increasing values of radiation parameter near the shrinking sheet. 
It is also observed that the boundary layer thickness for second solution is much higher than that of 
the first solution for fixed values of η near the shrinking sheet. At a large distance from the sheet the 
temperature takes its limiting value T∞.                                                                                                 
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Next, the temperature profiles for different values of the Prandtl number Pr (Pr = 0.5, 1.0, 1.5) are 
depicted in Figure 1(b) . The other parameters are R = 0.9, s = 3 (α = 2.618, 0.318), λ = -0.3 and 
power index p = 1. It is seen that the increase of Prandtl number results in the decrease of 
temperature distribution. The increase of Prandtl number means slow rate of thermal diffusion. 
Because of reduced thermal conductivity, there would be a thinning of the thermal boundary layer 
and this leads to the decrease in the temperature.                                                                                   

 
The dual temperature profiles for different values of heat sink parameter λ (λ = -0.1, -0.3  and -0.5) 
are depicted in Figure 1(c). Here mass suction parameter s = 3, Pr = 0.9, R = 0.7 and p = 1. The 
figure reveals that the temperature within the fluid decreases for the increasing values heat sink 
parameter λ. This fact is usual because of the fact that heat energy is absorbed in this case. Also it is 
to be noted that the boundary layer thickness for second solution is much higher than that of the first 
solution for fixed values of η near the shrinking sheet. The temperature overshoot at the wall is 
observed in the second solution for λ = -0.1.                                                                                           

 
Figure 1(d) represents the dual temperature distributions for various values the temperature power 
index p (p = 0, 1, 2) with s = 3, λ = -0.5 , R = 0.7 and Pr = 0.9. It is noticed from the figure  that the 
temperature within the fluid increases for the increasing values of power index p from 0 to 2 and 
this increase in temperature is very small for the first solution compared to the second solution.        

    
We shall now concentrate on the temperature distribution for varying values of suction parameter s 
keeping other parameters fixed at R = 0.6, Pr = 0.9, λ = -0.2 and power index p = 0 and this is 
shown in Figure 1(e). We notice that the effect of suction parameter s is to decrease the temperature 
in the boundary layer for both the solutions.                                                                                           

  

  

  

  

  

  

  



 
Chandaneswar Midya et al                                           J. of Eng. & Techn. Res., 2014, 2(5):47:56 

 

52 
 

  

Discussions for heat source case 
Now we study the heat source case. We have already seen that in heat source case, dual temperature 
distribution corresponding to the two exponential solution exists for s > 2 when  is 
satisfied. Infact, for physically valid flow and heat transfer real parameters, it difficult to satisfy the 
above condition for both the root  When for s = 3, we have α = 2.618 and 0.318. In the second 
solution the value of α is small. Therefore, in this case, the condition  is satisfied only 
when DPr is very large and heat source parameter is too small; otherwise the above condition will 
not be satisfied for the second solution. Thus, in heat source case, we study  temperature 
distribution for first solution only.                                                                                                           

 
First of all, the influence of radiation parameter R on the temperature profiles for first solution is 
presented in Figure 2(a) for Pr = 0.9, s = 3, λ = 0.3 and p = 2. It is observed that increasing in 
radiation parameter R is to decrease temperature within the boundary layer. This can be explained 
by the fact that the increase of radiation parameter R implies the release of heat energy from the     
flow region by means of radiation and thereby temperature is decreased within the boundary layer   
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We shall now concentrate on the temperature distribution for first solution (α = 2.618) for different 
values of the Prandtl number Pr and it is shown in Figure 2(b). The other parameters are R = 0.9, s 
= 3, λ = 0.3 and p = 1.  It is seen that the increase of Prandtl number results in the decrease of 
temperature distribution throughout the boundary layer when heat source is present. Actually, the 
increase of Prandtl number means slow rate of thermal diffusion. Because of reduced                        
thermal conductivity, there would be a thinning boundary layer and this leads to decrease in the 
temperature in the flow field.                                                                                                                  
The temperature profiles for first solution (α = 2.618) are depicted in Figure 2(c) for different values 
of the heat source parameters λ (λ  = 0.1, 0.3, 0.5). Here the radiation parameter is taken as R = 0.7, 
s = 3, pr = 0.9 and p = 1. It is seen that the temperature within the fluid is increased if λ is increased. 
This is logical because internal heat energy emission results in an increase of heat transfer close to 
the shrinking sheet.                                                                                                                                  

 
Now, we shall draw our attention to the effects of temperature distribution when the initial 
temperature is varied over the sheet. The temperature profiles for different values of power-law 
index p are plotted in Figure 2(d) for s = 3, λ = 0.5, Pr = 0.9 and R = 0.7. It is observed from the 
figure that the temperature is increased very slowly with the increase of power-law index p.              

   
Finally, the temperature profiles for various values of suction parameter s is presented in Figure 2(e) 
for fixed Pr = 0.9, λ = 0.2, R = 0.6 and p = 0 (in case of first solution α = 2.618). The figure reflects 
that the value of temperature at a particular η is reduced with increasing values of suction parameter 
s. Due to increase in the suction parameter s, the velocity boundary layer thickness becomes thinner 
and thinner and consequently decrease temperature within the fluid.                                                    
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CONCLUSION 
 

In conclusion, heat transfer over a linearly shrinking permeable surface with mass suction is 
investigated analytically in the presence of thermal radiation and heat source/sink. The exact 
analytical solutions of the boundary layer energy equation are obtained for power-law wall 
temperature boundary condition. The effects of radiation parameter R, Prandtl number Pr, heat 
source or sink parameter λ, the wall mass transfer parameter s and the power index p on the 
temperature distribution are studied. In heat sink case, dual temperature distribution is obtained for 
any s > 2, where s is the suction parameter. But in heat source case, dual temperature profiles may 
be  obtained for s > 2 with the condition . But, for physically valid flow and heat 
transfer real parameters, it difficult to satisfy the above condition for both the root  The 
temperature overshoot at the wall is observed for some cases.                                                              
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