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ABSTARCT

In this paper, a new search Hybrid algorithm (HA) is proposed to solve the optimal  reactive
power  dispatch (ORPD) Problem. The ORPD problemis formulated as a nonlinear constrained
single-objective optimization problem where the real power loss and the bus voltage deviations are
to be minimized separately. In order to evaluate the proposed algorithm, it has been tested on IEEE
30 bus system consisting 6 generator and compared other algorithms reported those before in
literature. Results show that HSis more efficient than others for solution of single-objective ORPD
problem.
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INTRODUCTION

In recent years the optimal reactive power disp@@RPD) problem has received great attention as
a result of the improvement on economy and secuwfitpower system operation. Solutions of
ORPD problem aim to minimize object functions sashfuel cost, power system loses, etc. while
satisfying a number of constraints like limits afsbvoltages, tap settings of transformers, reactive
and active power of power resources and transmigsies and a number of controllable Variables
[1, 2]. In the literature, many methods for solvihg ORPD problem have been done up to now. At
the beginning, several classical methods such adiggit based [3], interior point [4], linear
programming [5] and quadratic programming [6] h&een successfully used in order to solve the
ORPD problem. However, these methods have somewdistages in the Process of solving the
complex ORPD problem. Drawbacks of these algorittvaas be declared insecure convergence
properties, long execution time, and algorithmimptexity. Besides, the solution can be trapped in
local minima [1-10]. In recent years, many diffietr optimization techniques have been proposed
for solving the complex, multimodal functions inveeal fields [11-14]. Some of the well-known
optimization algorithms are the Genetic Algorith®4), Particle Swarm Optimization (PSO)
algorithm, Ant Colony Optimization (ACO) algorithrjfferential Evolution (DE) algorithm, and
Harmony Search (HS) algorithm. These algorithmsuse in various fields by many researchers
to obtain the optimum value of the problems [15-ZB4ch optimization algorithm uses different
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properties to keep a balance between the explarata exploitation goals which can be a key for
the success of an algorithm. Exploration attribotean algorithm enables the algorithm to test
several areas in the search space. On the othel; kbaploitation attribute makes the algorithm
focus the search around the possible candidatédsough the optimization algorithms have positive
characteristics, it is shown that these algoritidm$0t always perform as well as it is desired [21]
Because of this, hybrid algorithms are growing avkaterest since their solution quality can be
made better than the algorithms that form themdglining their desirable features. Hybridization
is simply the combination of two or more technique®rder to outperform their performances by
the use of their good properties together. Hybation has been done in several different ways in
the literature and it is observed that the new idytaition techniques are very efficient and effesti
for optimization [21-26]. A novel hybrid algorithproposed in this paper is called HA and it is a
combination of three well known evolutionary algbms, namely Differential Evolution (DE)
algorithm, Particle Swarm Optimization (PSO) altum, and Harmony Search (HS) algorithm. It
merges the general operators of each algorithnmrseely. This achieves both good exploration
and exploitation in HA without altering their inddwal properties. The performance of HA has
been evaluated in standard IEEE 30 bus test syateithe results analysis shows that our
proposed approach outperforms all approaches igaéstl in this paper. The effectiveness of the
proposed approach is demonstrated through IEEE+80 dystem. The test results show the
proposed algorithm gives better results with lemsigutational burden and is fairly consistent in
reaching the near optimal solution.

MATERIA L AND METHODS

Voltage Stability Evaluation

Modal analysis for voltage stability evaluation

Modal analysis is one of the methods for voltagdbitity enhancement in power systems. In this
method, voltage stability analysis is done by cotimguEigen values and right and left Eigen
vectors of a jacobian matrix. It identifies thetical areas of voltage stability and provides
information about the best actions to be taken tloe improvement of system stability
enhancements. The linearized steady state systeser flow equations are given by.

Al = []q]epe I(];/ | @

AQ
Where
AP = Incremental change in bus reawer.
AQ = Incremental change in  bus reactive
Power injection
A® = incremental change in bus voltagegle.
AV = Incremental change in bus voltaglmgnitude

Joo » Jpv, Joo ,» Jov jacobian matrix are the sub-matrixes dfe System voltage stability is
affected by both P an@. However at each operating point we keep P consdadtevaluate
voltage stability by considerinmppcrementatelationship between Q and

To reduce (1), leAP = 0, then.
AQ = [Jqv — Joolpp-1Jpv]AV = JRAV  (4)
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AV =]71 - AQ (5)
Where
Jr = (]QV - ]Qe]pe-llpv) (6)

Jr is called the reduced Jacobian matrix of the system

Modes of Voltage instability:

Voltage Stability characteristics of the system bandentified by computing the Eigen values and
Eigen vectors

Let
Jr=8wm (7)
Where,
& = right eigenvector matrix okJ
n = left eigenvector matrix okJ
A = diagonal eigenvalue matrix of and
Jpt = €A (8)
From (5) and (8), we have

AV = EnTMAQ (9)

or

AV = zf;—?iAQ (10)

Whereg; is the ith column right eigenvector amdhe ith row left eigenvector okJ
Ai is the ith eigen value okJ
The ith modal reactive power variation is,
AQmi = Ki§;, (11)
where,
Ki =282 —1 (12)
Where
& is the jth element af
The corresponding ith modal voltage variation is
AVii = [1/0]AQm;  (13)

It is seen that, when the reactive power variasosong the direction of the corresponding
voltage variation is also along the same directiad magnitude is amplified by a factor which is
equal to the magnitude of the inverse of the itigek value. In this sense, the magnitude of each

Eigen value\; determines the weakness of the corresponding Immdtage. The smaller the
magnitude ofl;, the weaker will be the corresponding moddiage. If | A; | =0 the ith
modal voltage will collapse because any changéat modal reactive power will cause infinite
modal voltage variation. In (10), 1&Q = & where g has all its elements zero except the kth one
being 1. Then,
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N1k g,
M

AV = 3 (14)
n,, Kthelementofy,

V —Q sensitivity at bus k

Vg _ o« Pa
% i =i o (15)

Nyk g,
M

Problem Formulation

The objectives of the reactive power dispatch mbtonsidered here is to minimize the system
real power loss and maximize the static voltagdil#ia margins (SVSM). This objective is
achieved by proper adjustment of reactive poweiabéas like generator voltage magnitudg § V

, reactive power generation of capacitor bank (Qamd transformer tap setting (tk).Power flow
equations are the equality constraints of the grak| while the inequality constraints include the
limits on real and reactive power generation, bolsage magnitudes, transformer tap positions and
line flows

A. Minimization of Real Power Loss

It is aimed in this objective that minimizing ofetiheal power loss (Ploss) in transmission linea of
power system. This is mathematically stated asvl

Ploss= X k=1 Bk(VE+VE-2v; Vv (16)

: )
K=(i,) j cos 91]

Where n is the number of transmission lingsjsgthe conductance of branch k; &d \f are
voltage magnitude at bus i and bus |, 8iés the voltage angle difference between busdi ks j.
B. Minimization of Voltage Deviation
It is aimed in this objective that minimizing ofetiDeviations in voltage magnitudes (VD) at load
buses. This is mathematically stated as follows.
Minimize VD =YL, |V, — 1.0] (17)
Where nl is the number of load busses apt ¥he voltage magnitude at bus k.
C. System Constraints

In the minimization process of objective functioeeme problem constraints which one is equality
and others are inequality had to be met. Objedtinetions are subjected to these constraints shown
below.

Load flow equality constraints:

Pgi- Ppi =V,

Gy COSH”] =0i=12...,nb

Z}lfl Vj [+Bij sin Hij
(18)

(19)
where,nb is the number of buseBg andQg are the real and reactive power of the generBtor,
andQp are the real and reactive load of the generatarGgrandB;; are the mutual conductance
and susceptance between baad bug.Generator bus voltag¥{;) inequality constraint:

VImin < Ve < VIO i€ ng (20)
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Load bus voltageMLi) inequality constraint:

VI < v S VG e nl (21)
Switchable reactive power compensatioQ€i) inequality constraint:
Qe < Qci = Q™ iEnc (22)
Reactive power generatio®Gi) inequality constraint:
¢i < Qe < Qg i€Eng (23)

Transformers tap setting;} inequality constraint:
TN < T, <TM* jent (24)
Transmission line flow ($) inequality constraint:
Smin < gmax i e nl (25)
Where, nc, ng and nt are numbers of the switchabéetive power sources, generators and
transformers.

HA ALGORITHM

In the literature, many different ways of combinitige well-known algorithms are performed to
obtain more powerful optimization algorithms [21}2B6he main aim of the hybridization is to use
different properties of different algorithms to impe the solution quality.

Among the well-known algorithms, DE, PSO and HSodathms are the three algorithms that are
used in many fields by researchers and these Higwi are proven to be very powerful
optimization tools [5-8]. Each algorithm has di#fat strong features. As an example, DE usually
requires less computational time and also has rbafiproximation of solutions for most of the
problems. PSO generally avoids the solution fraapging into local minima by using its diversity.
HS on the other hand, is an efficient algorithmtthas a very good performance on different
applications.

HA uses the operators of these three algorithmk rehdomly selected parameters consecutively
and by not altering their properties. The new cdatdi set, obtained by each algorithm, is used as a
new solution set for the other algorithm.

HA algorithm for solving reactive power dispatch poblem.

Step 1. Generation of the candidate population witren dimensions: Initialize the candidate
population X in a given range.

Step 2.Crossover and mutation operators of DE: The mutation and crossover operators are applied
to find the better approximation to a solution lsyng (26), (27), and (28)

The mutant vectoY; is calculated as corresponding to each memberpalpton using (1) where

a, b, andc are distinct numberdMutant vectorV;; is crossoverred witX; and trial vectoiJ; is
generated by using (27) where rj is a uniformlytridhsited number for eacﬁhjparameter ofX.
Also, F andCR are the main control parameters of DE.

Vi=X,+F(X, —X,) (26)

Uij = {Xi ; otherwise (27)
_{ Uiif fU) < f(XD)

Xi = {Xi otherwise (28)

Selection process determirldgto survive to the next generation by using (28).
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Step 3.Particle movement by PSO: The randomly selected parameters are applied ondloeities

by using (29). When a better solution is being asced, all particles improve their positions by
using (30). This movement avoids the particlesadrbpped to the local minima by increasing the
diversity of solutionV;; refers to the velocity values and for each rowaigulated according to the
control parameters,, ¢, andw by using (29)global, is the best position obtained by any particle
and Ppes is the personal best of a partick; refers to current positions of a particle and can b
updated by using (30) for each row.

Vi =Ww#* Vi + 1 % (Pbest - Xi) + Cy * (glObalbest - Xi)
(29)

Xi :Xi +Vl (30)

Step 4.Choosing a neighbouring value by HS. HS cansearch in different zones of the search space
by using the control parameters that larer, par andfw. With a given probability ofmcr, a value

is selected from the candidate populatidfith a given probability of Timcr, a random candidate

is generated in the given range. The population ltave non-updated candidates to keep the
diversity in the population with a given probalyilinf 1par. With a given probability opar, the
candidates are updated by applying (31) where yasmd(random numbeE (-1,1).

Xi=Xj+rand () *fw (31)

Step 5. Consecutively Step 2, Step 3, and Stee 4@plied. The algorithm is performed until the
termination criterion is not satisfied. Elitismircluded in HDPH by keeping the best solution at
the end of each iteration.

RESULTS AND DISCUSSION

The validity of the proposed Algorithm techniquedismonstrated on IEEE-30 bus system. The

IEEE-30 bus system has 6 generator buses, 24 losestand 41 transmission lines of which four

branches are (6-9), (6-10) , (4-12) and (28-27)e- with the tap setting transformers. The real

power settings are taken from [1]. The lower vadtagagnitude limits at all buses are 0.95 p.u. and

the upper limits are 1.1 for all the PV buses ai®® p.u. for all the PQ buses and the reference bus
TABLE 1.VOLTAGE STABILITY UNDER CONTINGENCY STATE

Sl.No | Contigency | ORPD Vscrpd
Setting | Setting

1 28-27 0.1400| 0.1422
2 4-12 0.1658| 0.1662
3 1-3 0.1784| 0.1754
4 2-4 0.2012| 0.2032

TABLE 2.LIMIT VIOLATION CHECKING OF STATE VARIABLES

S_tate limits ORPD | VSCRPD
variables | Lower | upper
Q1 -20 152 1.3422| -1.3269
Q2 -20 61 8.9900| 9.8232
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Q5 -15 49.92] 25.920; 26.001
Q8 -10 63.52] 38.820040.802

Q11 -15 42 2.9300| 5.002

Q13 -15 48 8.1025| 6.033

V3 0.95 1.05 | 1.0372| 1.0392
V4 0.95 1.05 | 1.0307| 1.0328
V6 0.95 1.05 | 1.0282| 1.0298
V7 0.95 1.05 | 1.0101| 1.0152
V9 0.95 1.05 | 1.0462| 1.0412
V10 0.95 1.05 | 1.0482| 1.0498
V12 0.95 1.05 | 1.0400| 1.0466
V14 0.95 1.05 | 1.0474] 1.0443
V15 0.95 1.05 | 1.0457| 1.0413
V16 0.95 1.05 | 1.0426| 1.0405
V17 0.95 1.05 | 1.0382| 1.0396
V18 0.95 1.05 | 1.0392| 1.0400
V19 0.95 1.05 | 1.0381] 1.0394
V20 0.95 1.05 | 1.0112] 1.0194
V21 0.95 1.05 | 1.0435] 1.0243
V22 0.95 1.05 | 1.0448| 1.0396
V23 0.95 1.05 | 1.0472] 1.0372
V24 0.95 1.05 | 1.0484| 1.0372
V25 0.95 1.05 | 1.0142] 1.0192
V26 0.95 1.05 | 1.0494| 1.0422
V27 0.95 1.05 | 1.0472] 1.0452
V28 0.95 1.05 | 1.0243] 1.0283
V29 0.95 1.05 | 1.0439] 1.0419
V30 0.95 1.05 | 1.0418| 1.0397

TABLE 3. COMPARISON OF REAL POWER L 0SS
Method Minimum
loss
Evolutionary 5.0159
programming[27]
Genetic algorithm[28] 4.665
Real coded GA with 4.568
Lindex as
SVSM[29]
Real coded genetic
algorithm[30] 4.5015
Proposed HA method 41074

80



K. Lenin et al J. of Eng. And Tech. Research, 2014, 2(1) :74 :82

CONCLUSION

In this paper, one of the recently developed stetoha algorithms HA has been
demonstrated and applied to solve optimal reaqtoxger dispatch problem. The problem has been
formulated as a constrained optimization probleniffeBent objective functions have been
considered to minimize real power loss, to enhaheevoltage profile. The proposed approach is
applied to optimal reactive power dispatch problem the IEEE 30-bus power system. The
simulation results indicate the effectiveness aploustness of the proposed algorithm to solve
optimal reactive power dispatch problem in testeys The HS approach can reveal higher quality
solution for the different objective functions img paper.
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