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ABSTRACT  

 The review analyzes the results of theoretical investigations of excitons states (electron - hole pairs 
states) in a quasi - zero - dimensional nanosystems consisting of spherical semiconductor 
nanocrystals (quantum dots) placed in transparent dielectric matrices. The theory of exciton states 
in a quantum dot  under conditions of dominating polarization interaction of an electron and a hole 
with a spherical (quantum dot – dielectric matrix) interface are developed. An shown, that the 
energy spectrum  of heavy hole in the valence band quantum dot is equivalent to the spectrum of 
hole carrying out oscillator vibrations  in the adiabatic electron potential. In the framework of the 
dipole approximation theory are developed interband absorption of light in quasi – zero – 
dimensional nanosystems. An shown,  that the absorption and emission edge of  quantum dots is 
formed by two transitions of comparable intensity from different hole size – quantization levels and 
into a lower electron size – quantization level. Propose a theoretical prospect of using hole 
transitions between equidistant series of quantum levels observed in nanocrystals for desining a 
nanolaser. The theory of an exciton formed from spatially separated electron and hole (the hole is 
in the quantum dot volume, and the electron is localized at the outer spherical quantum dot–
dielectric matrix interface) is developed within the modified effective mass method. The effect of 
significantly increasing the exciton binding energy in quantum dots of  zinc selenide, synthesized in 
a borosilicate glass matrix, relative to that in a zinc selenide single crystal is revealed.  

PACS: 71.35; 73.20; 73.40 
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INTRODUCTION 

   The optical properties of quasi – zero – dimensional structures consisting of spherical 
semiconductor nanocrystals (SNs) (quantum dots (QDs)) and dielectric nanocrystals  of radius a ~ 
1-10 nm, grown in transparent dielectric matrices, are currently being intensively studied [1-9]. The 
reason for these studies is that heteroplase systems are promising materials for creating new 
nonlinear optoelectronic elements, in particular elements for controlling optical signals in optical 
lasers or optical computers [1-25]. 

    Since the energy gap of a semiconductor is much smaller than in the dielectric host, the motion of 
carriers in the semiconductor microcrystal is restricted by its volume. Optical and nonlinear optical 
properties of  heterophase systems are determined by the energy spectrum of spatially limited 
electron – hole pairs (EHP and excitons) [6-25]. Quatum well effects have been found by optical 
spectroscopic studies in the energy spectrum of electrons [3] and excitons [4, 5] in such quasi – zero 
– dimensional structures. 

    The energy spectrum of an exciton in a small SN was obtained in Refs. [6-34] as a function of the 
SN radius a. The mentioned spectrum has been obtained using the adiabatic approximation, under 
the assumption that �� ≪ ��  , where �� and �� are the effective masses of an electron and a 
hole in a SN. In the exciton Hamiltonian, the Coulomb interaction between an electron and hole, as 
well as the polarization interaction of the electron and the hole with the surface of the SN, have 
been taken into account. The first order perturbation theory on the electron wave function of a 
spherical potential well of infinite depth has been used. 

    In Refs. [20,35,36] the exciton energy spectrum of a small SN, under the assumption that the 
electron could leave the SN volume for the ambient dielectric medium, has been obtained. The 
problem solved in Refs. [20,35,36 ] was that of the electron energy spectrum in small SN. In these 
studies the finite of the potential barrier (��) at the boundary between the SN and the dielectric 
matrix, and the associated penetration of the ambient host by the electron, have been taken into 
account. The electron wave functions were obtained in Refs. [29,30] for an electron travelling both 
in the SN and in the ambient dielectric host. 

   The motion of charge carriers in semiconductor nanocrystals, like in quantum dots, is limited in 
three directions. Therefore the energy spectrum of charge carriers is discrete in SNs with linear 
dimension of the order of 1-10 nm. In our opinion this property may be used for designing optical 
nanolasers or optical computers [6-24]. In this context we point out that the size (i.e., radius) a of a 
quantum dot should be in the range of a few nanometers in order to provide that the difference, i.e., 
energy splitting ∆	�(�), between electron and hole levels are of  the order of a few ��� at the room 
temperature �(�� is the Boltsman constant).   

    In experiments reported in Ref. [3], an interesting energetic structure was found which consisted 
of an equidistant series of quantum levels. The above structure is caused by quantization of the 
heavy hole energy spectrum in the adiabatic potential of the electron. In [18 ] presents the 
theoretical prospect of using semiconductor nanocrystals for designing nanolasers.  

     The theory of exciton states in a QDs under conditions of dominating polarization interaction of 
an electron and a hole with a spherical (quantum dot – dielectric matrix) interface is developed [26- 
44 ]. In [42], a new modified effective mass method was proposed to describe the exciton energy 
spectrum in semiconductor QDs with radii of a ≈ aex (aex is the exciton Bohr radius in the 
semiconductor material contained in the QD volume). It was shown that, within a model in which 
the QD is represented as an infinitely deep potential well, the effective mass approximation can be 
applied to the description of an exciton in QDs with radii a comparable to the exciton Bohr radius 
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aex, assuming that the reduced effective exciton mass is a function of the radius a, µ = µ(a) [42]. 
Contributions of a kinetic energy of an electron, energy of a Coulomb interaction between an 
electron and a hole, and energy of their polarization interaction with a QD surface to an energy 
spectrum of an exciton in a QD are analyzed [13-15, 41 ]. 

In the adiabatic approximation and within the modified effective mass method [42], an expression 
for the binding energy of an exciton whose electron and hole move in the semiconductor QD 
volume was derived in [43]. In [43], the effect of significantly increasing the exciton-binding 
energy in cadmium selenide and sulfide QDs with radii a, comparable to the exciton Bohr radii aex, 
relative to the exciton- binding energy in cadmium selenide and sulfide single crystals (by factors of 
7.4 and 4.5, respectively) was also detected. 

      A theory of the size quantization Stark effect in SNs  has  been developed for the case of 
dominating  polarization interaction of an electron and a hole with the nanocrystal surface [22]. A 
shift of electron and hole  quantum well levels in a  SN in the interband absorption range in a 
uniform external electric field is determined by the quantum-confinement  quadratic Stark effect. 
An electrooptical method  is proposed, making it possible   to estimate the characteristic quantum 
dot radius at which three-dimensional excitons can exist [22].  Electrooptical  properties of quasi-
zero-dimensional nanosystems containing SNs are governed by the quantum-confinement  quadratic 
Stark effect in the range of  interband absorption [22].   

     The theory of an exciton formed from spatially separated electron and hole (the hole is in the 
quantum dot volume, and the electron is localized at the outer spherical quantum dot–dielectric 
matrix interface) is developed within the modified effective mass method. The effect of 
significantly increasing the exciton binding energy in quantum dots of zinc selenide, synthesized in 
a borosilicate glass matrix, relative to that in a zinc selenide single crystal is revealed. It was shown 
that the short-wavelength shift of the peak of the low-temperature luminescence spectrum of 
samples containing zinc-selenide quantum dots, observed under the experimental conditions, is 
caused by quantum confinement of the ground-state energy of the exciton with a spatially separated 
electron and hole [37, 38]. 

    The paper is organized as follows. In Section 2 we discuss the energy spectrum of exciton states. 
In section 3 we consider  interband absorption and emission of light in SNs. The concept of using 
CdS nanocrystals as active lasing medium for constructing nanolasers is presented in Section 4. The 
theory of an exciton formed from spatially separated electron and hole (the hole is in the quantum 
dot volume, and the electron is localized at the outer spherical quantum dot–dielectric matrix 
interface) is developed within the modified effective mass method in Section 5.  

  Spectrum of an Exciton in a Quasi – Zero – Dimensional Semiconductor  Nanosystem 

     A simple model of a quasi – zero – dimensional structure in the form of a neutral spherical SN 
of radius a and permittivity ��, embedded in a medium with permittivity ��, was discussed in Refs. 
[26 - 34]. An electron (е) and a hole (h) with effective masses �� and �� were assumed to travel 
within the SN; we use �� and �� to denote the distances of an electron and a hole from the center of 
the SN, respectively (see Fig. 1). We assume that the permittivities satisfy the relation �� ≫ ��, and 
that the conduction and valence bands are parabolic. In this model, in the framework of the effective 
mass approximation, the exciton ( EHP) Hamiltonian takes the form [26-34] 

� = − ℏ�
���

∇�� − ℏ�
���

∇�� + 	� + ���(��, ��) + ���! ("�, #) + ���́(��, #)+ 

                          +���! (��, ��, #) + ���́(��, ��#)                                                 (1) 
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 where the first two terms represent the kinetic energy of the electron and the hole, ���(��, ��) is 
the energy of the Coulomb interaction between the hole and the electron 

                            ���(��, ��) = − ��
%�&

&
(��'(�����)*+,-��'). �⁄                                          (2) 

where the angle 0  between the vector (��) and (��) and ���! (��, #) are the energies of interaction 
of the electron and the hole with their own images, ���`(,��, ��, #) and ���`(��, ��, #) are the 
energies of interactions with “strange” images, and 	� is the bandgap in the infinite semiconductor 
with permittivity ��. (see Fig. 1). 

    

 

 

Fig. 1. Schematic diagram of an exciton in a spherical semiconductor nanocrystal. The radius 
vectors �� and ��  determine the distance of the electron e and the hole h from the center of a 

nanocrystal of radius a. The image charges   ( ) erae e/=′  and ( ) erah h/−=′    are located 

at the distances    ( )ee rar /2=′  and ( )hh rar /2=′  from the center of the nanocrystal 0 and 

represent point image charges of the electron and hole, respectively. 

     

For arbitrary �� and ��, the terms in Eq. (1) that describe the energy of the polarization interaction 
of the electron and hole with the SN surface can be written in an analytic form [26-29] which is 
particularly simple for the case �� ≫ �� (see Refs. [30-36]): 

                                            �� �`(��, #) = ��
�%�& ( &�

&�(��'
+ %�

%.
),                                               (3) 

                                        ���́(��, #) = ��
�%�& 3 &�

&�(��'
+ %�

%.
4,                                                 (4) 

                         ���! = ���́ = − ��
�%�&

&
[(���� &)⁄ �(�����)*+,-&�]. �⁄ .                                      (5) 
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    The spectrum of an  exciton (EHP) in a small semiconductor microcrystal was investigated in 
Refs. [10,11] in the case where its size was restricted by the condition 

                                                   #� ≪ #� ≪ # ≤ #� ≅ #�:,                                                   (6) 

where #� = ��ℏ� (��;�)⁄ , #� = ��ℏ� (��;�)⁄  and #�: = ��ℏ� (<;�⁄ ) are the Bohr radii of the 
hole, electron and exciton in the semiconductor with permittivity ��, respectively; e is the electron 
charge, < = ���� (�� + ��)⁄   is the reduced effective mass of the EHP, and #� is a characteristic 
size that is of the order of the interatomic distance. When the condition (6) is satisfied, the 
polarization interaction is a significant part in the potential energyof the Hamiltonian (1). The above 
inequalities also enable us to examine the motion of an electron and a hole in the effective mass 
approximation. The validity of Eq. (6) futher enables us to consider the motion of a heavy hole 
(�� ≫ ��) in the electron potential averaged over the motion of the electron (adiabatic 
approximation). 

   The adiabatic approximation can be used if we assume that the electron kinetic energy is the 
largest term and take the last four terms in Eq. (1) together with nonadiabatic operator as a 
perturbation. Then, taking into account only the first order of the perturbation theory, one can easily 

obtain the spectrum of an exciton (EHP), 	=�,>�,��
=�,>�,��(#), in the state (?� , @� , ��;  ?�, @�, ��) (here 

?� , @� , �� and ?�, @�, �� are the main, orbital and magnetic quantum numbers of an electron and a 
hole) [27,30,33]:  

                  	=�,>�,��
=�,>�,��(#) = ℏ�

���&� B=�,>�
� + �C��́(#) + D=�,>�,��

=�,>�,��(#) + 	�,                        (7) 

where the first term is the kinetic energy of an electron in an infinite spherical well, and �C��`(#) is 
the average value of the electron interaction with the self – image with the infinitely deep spherical 
well functions 

                     Ψ=� , @� , �� = E� F�⁄
& G>�,��(0, B) HI�J. �⁄ (KL�,I�F� &)⁄

HI�JM �⁄ (KL�,I�)  ,                               (8) 

where G>�,�� are normalized spherical functions, B=�,>� are roots of the Bessel function 

N>�-� �⁄ OB=�,>�P = 0. The quantity D=�,>�,��
=�,>�,��(#) is an eigenvalue of the heavy hole Hamiltonian  

                  �� = − ℏ�
���

∇�� + ���! ("�, #) + �C=�,>�,��("�, #),                             (9) 

where  

                �C=�,>�,��("�, #) = �C��("�, #) + �C��! ("�, #) + �C��́("�, #)                      (10) 

is the average value of the Coulomb interaction and of the electron and hole interaction with “alien” 
images on “free” electron states (8). 

Quantitative results for the EHP spectrum (7) are obtained here only for the simple case @� = 0. 
Using expressions (3) – (5), (8) and (10) one can obtain 

    �C��
=�,�,�(R, S) = S(�[TUV(�W=�:)

W=�: − 2YZ(2[?�R) + 2YZ(2[?�) + 2 ln R − 2],            (11) 

                             �C��!
=�,�,�(R, S) + �C��́

=�,�,�(R, ^) = −2S(�,                                    (12) 

      �C��́
=�,�,�(R, S) = S(� 3_=�,� + %�

%.
4,    �C��! (R, S) = S(�( �

�(:� + %�
%.

)                    (13) 
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where  

_=�,� = 2 ` aR�
�

�

SZ?�([?�R�)
1 − R��

, 

and Ci(y) is the integral cosine. Here and below the energy is measured in units cd� = ℏ� 2��#��⁄  
and nondimensional values of the length R = ("� #)⁄  and           S = (# #�)⁄  are used. 

Note that in the approximation considered the interaction of an electron with the images (its own 
and “alien”) (12), (13) and the interaction of a hole with an “alien” image (12) yield a constant 
addition ~S(� to the hole energy. 

Taking into account formulae (3) and (10) – (12), we write the potential energy in the heavy hole 
Hamiltonian (9) as follows 

fg=�,�,�(R, S) = ���! (R, S) + �C =�,�,�(R, S) =                                                         (14) 

= S(�[ �
�(:� + TUV(�W=�:)

W=�: − 2YZ(2[?�R) + 2YZ(2[?�) + 2 ln R + %�
%.

− 4]. 
The minimum of the potential energy (14) 

fg�i=
=�,�,�(S) = fg=�,�,�(R = 0, S) = j=�,�

S , 
where  

j=�,� = 2YZ (2[?�) − 2 ln(2[?�) − 2k + ��
��

− 1, 
(k = 0,577 is the Euler constant) is reached at the point R = 0. A series expansion of the potential 
(14) with respect to the parameter R� ≪ 1 with accurancy up to the first two terms gives the hole 
spectrum D=�,�,�

l� (S̅) in oscillator form [27,29]: 

                         D=�,�,�
l� (S̅) = nL�,o

+̅ + pg(S̅, ?�) 3q� + r
�4,                                         (15) 

where 

                        pg(S,g ?�) = 2.232(1 + �
r [�?��)� �⁄ S̅(r �⁄ ,                                     (16) 

and pg(S̅, ?�)is the frequency of the hole oscillator vibrations, q� = 2=t + @� = 0,1, …. is the hole 
main quantum number (?F is the hole radial quantum number). 

Taking into account formulae (13), (15) and (16) we obtain the EHP spectrum [	=�,>�v�
l� (S̅)] in the 

state (?� , @� = 0; q�) for the SN of  radius (S̅ = #C #�)⁄  [28-30]: 

	=�,>�v�
l� (S̅) = 	� + W�=��

+̅� wx + S̅(� 3_=�,� + j=�,� + %�
%.

4 + pg(S̅, ?�)(q� + r
�) ,    (17) 

where K=0.67 represents the spread of the SN radii [4] and x = �� ��⁄ . Moreover, numerical 
analysis of x – ray data [5], which took the spread of the SN radii into account, shows that the mean 
radius evaluated over the Lifshits – Slezov distribution [45] was S̅ = 0,86S [5], where s is the SN 
radius obtained in the small variance approximation. 
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The main contribution to the EHP spectrum (17) is provided by second term (electron kinetic 
energy), which comes from the purely spatial restrictions imposed on the quantization region. The 
last two terms, which are associated with the Coulomb and polarization interactions between the 
electron and the hole, are regarded as corrections. The polarization interaction between hole and 
electron, on the one hand, and the surface of the SN, on the other, provides, like the size 
quantization of carriers, a contribution to the renormalization of the energy gap of the SN given by 
Eq. (17). The polarization interaction, which is of the same order of magnitude as the exciton 
binding energy in the SN, in this case is found to be much smaller than the size quantization energy 
of the charge carriers in the SN. 

We also note that the exciton spectrum (17) is valid only for low – lying states of the exciton 
(?� , 0; q�) in the SN, for which (	=�,� − 	�) ≪ ��, where �� is the depth of the potential well for an 
electron in the SN (e.g., in the cadmium sulphide SN, ��=2.3- 2.5eV when the condition (6) is 
satisfied [46,47]). 

In Refs. [3, 48] interband absorption spectra of CdS SNs (�� = 9.3) of sizes varying from 1 to 10� 
nm dispersed in a transparent dielectric matrix of silicate glass were investigated. The effective 
masses of electrons and holes in CdS were, respectively, �� �� = 0.205 ⁄ and �� �� = 5 ⁄ (i.e., 
�� ≪ ��). The dimensional quantization phenomenon found in ref. [4] for the electron energy 
spectrum was qualitatively described by the formula 

                                	=�,>�(#) = 	� + ℏ�
�}&� B=�,>�

�                                                   (18) 

    In this case in the region of SN sizes a comparable with the exciton radius, # ≤ #�: ≅ 3 nm, a 
deviation of the experimental points from the theoretical dependence (18) was observed. The 
spectrum of electron – hole pairs in the interval of SN sizes # ≤ #�: calculated in Refs. [26-32] 
gave a qualitatively correct description of the dependence of the experimental spectrum [3] on the 
SN radius a.  

In the experiment reported in Ref. [5], an energy structure consisting of an equidistant series of 
levels was found in the region if transitions to the lower level of dimensional quantization of the 
electron (?� = 1). The above structure is caused by quantization of the hole energy spectrum in the 
adiabatic potential of the electron. 

From the comparison of formula (16) (for ?� = 1) with the experimental dependence of the 
splitting magnitude on the SN size #C obtained in Ref. [5], it follows that for SNs of radii 1.5 ≤ #C ≤
3.0 nm, the splitting pg(S̅) (Eq. (16)) is in good agreement with the experimental data [5] and differs 
from the latter only slightly (≤ 4%).  
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Fig. 2. The dependence of the splitting ( )aω  (16) of the radius of the nanocrystal a . The solid 

line shows the experimental dependence  ( )aω  [5 ].  

Interband Absorption and Emission of Light in Nanocrystal 

  The interband absorption of light in SNs was studied theoretically in [21,25, 39, 49] using the 
dipole approximation in the framework of the model considered here, and under the assumption that 
the absorption length D ≫ #. 

An expression for the quantity K(S̅, p) defined by the hole optical transition from the energy level 
q� = 2?� to the lowest electron level (?� = 1, @� = �� = 0) was derived in the following form:  

w(S̅, p) = � ∑ �=�(^̅)�[∆(p) − W�
+̅�

��
��

− �
+̅ 3_�,� + j�,� + %�

%.
4 − pg(S̅=� , ?� = 1)(2?� + 3 2)]⁄  (19) 

where ∆(p) = ℏp − 	�, p - incident light frequency, and A is proportional to the square of the 
absolute value of the dipole moment matrix element calculated with Bloch functions. The quantity 
K(S̅, p) (19) connects the energy absorbed by SN in a time unit with the time average of electric 
field square of incident wave. Moreover, the product of K (S̅, p) and SN concentration in the 
dielectric matrix gives electric conductivity of the considered quasi – zero – dimensional system for 
the frequency p, which is connected with light absorption coefficient in the usual way. 

We determine the quantity w(S̅, p) (19) corresponding to hole optical transition from the energy 
level q� = 2?� to the lowest electron level (?� = 1, @� = �� = 0). In this case, the expression for 
the quantity �=�(S̅),  given by the square of the overlap integral of the electron and hole wave 
functions, take the form [17, 21, 33, 42] 

                        �=�(S̅) = �W� �⁄

3�-�
MW�4M �⁄

=�-�
��L� =�! (S̅)(r �⁄                                              (20) 

In the interband optical absorption spectrum of SN, the radius of which fulfills condition (7), each 
line corresponding to given values of the radial ?� and orbital @� quantum numbers turns into a 
series of close lying equidistant levels, corresponding to various values of the main hole quantum 
number q�. This conclusion follows from (15), (16) and (19), and is a direct consequence of the 
Coulomb and polarization interactions of an electron and a hole in SN. 

We can estimate value of the overlap integral square (w(S̅, p) �⁄ ) using (19), (20) and the 
experimental data taken from Ref. [3]. For the hole transitions from the equidistant quantum levers: 
(?� = 0; @� = �� = 0), (?� = 1; @� = �� = 0), (?� = 2; @� = �� = 0), (?� = 3; @� = �� = 0), 
to the lowest electron size –quantized level (?� = 1, @� = �� = 0), we have  

                      
�(+̅,�)

� = ��(S̅) + ��(S̅) + �r(S̅),                                          (21) 

where �� = 7.66 S̅(r �⁄ , �� = 0.5 ��, �� = 9.4 ∙ 10(���, �r = 10(���. From above expression, it 
follows that the main contribution in the light absorption coefficient is a cadmium sulphide SN with 
the radius s (6) comes from the hole spectral lines corresponding to quantum numbers (?� =
0; @ℎ=�ℎ=0 and ?ℎ=1;@ℎ=�ℎ=0, the transition oscillator strengths of which are dominant. The 
contribution of higher exited hole lines (?� ≥ 2; @� = �� = 0) is negligible. 

This way, in the framework of the considered model of the quasi – one – dimensional system it was 
shown that the absorption and emission edge of a cadmium sulphide SN is formed by two 
transitions of comparable intensities. 
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Nanolaser on Heavy Hole Transition in semiconductor nanocrystals 

We assume that CdS microcrystals have a direct band structure, like bulk CdS. The extrema of the 
conduction and valence bands are placed in the centre of the Brillouin zone. Moreover, CdS is wide 
– gap semiconductor (	� = 2.58 ;�) in which nonparabolicity effect are weak. At the same time, 
the dispersion laws near the bottom of the conduction band and the top of the valence band can be 
considered as parabolic [43]. 

In the construction of the theory, it was assumed that the electron and hole bands are parabolic. The 
nonparabolicity parameter j of such bands for EHP energy 	�,�

l� (#) (17) in the group state, which is 
obtained from the experiments of Refs. [3, 41] in SN of size #~#�: takes a small value 

�(#) = 	�,�
l� − 	�

	�
≤ 8%. 

This relation gives a basis for the assumption that the valence and conduction bands are, to a high 
degree of accuracy, parabolic. 

In Fig.3, the energy diagram of the optical transitions in CdS SN of radius a fulfilling the condition 
(6) is shown [18]. The electron energy spectrum 	=�,>�(#) (18) in the conduction band of a SN of 
the radius a comparable to the linear dimension of quasiparticles in semiconductors is determined 
only by the size quantization effect. The energy spectrum D=�,�,�

l�  of heavy hole in the valence band 

is equivalent to the spectrum of hole carrying out oscillator vibrations with frequency pg(^̅, ?�) 
(Eq.(16)) in the adiabatic electron potential. 

Fig.3. The scheme of the optical transition of an electron and a hole in a CdS nanocrystal. The 
electron energy spectrum 	=�,>�(#) (18) and the hole potential energy fg=�,�,�(R, S) (14)  are shown;  
	� −   bandgap width. The electron states in the conduction band are labeled as (1 s) and (1 p). The 
hole states in the valence band are denoted as |q� = �0〉� and     |q� = �1〉�.    Transitions are labelled as 
follows:  “1”  - pumping, “2”- creating inverse population, “3”  - lasing. 
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On the basis of presented results we can formulate an action scheme for a laser designed on CdS 
quantum dots  [18] growed in boric – silicate glass matrices [3-5, 39-41]: 

1. Pumping: the hole transition from energy level D=�,�,�
l� (#) to electron state 	=�v�,>�v�(#) (1s - 

state) in conduction band with energy (transition “1” in Fig.3): 
                         ℎ��(S̅) = 	� + 	�,�(S̅) + D�,�,�� (S̅)                                  (22) 

2. Creation of inverse population on the hole level |q� = �0〉� by means of electron transition from 
the energy level 	�,�(S̅), with spin flip [50], to the hole energy level D�,�,�� (S̅) (transition “2” in 
Fig.3). The energy of this transition 

                          ℏ��(S̅) = 	� + 	�,�(S̅) + D�,�,�� (S̅)                                  (23) 
3. Lasing step: transition of the hole in the valence band between equidistant levels |q� = �0〉 →
qℎ=1 (transition “3” in Fig.3) separated by the energy 

                                       ∆(S̅) = ℏpg(?� = 1, S̅).                                        (24) 
In the experimental conditions from Refs. [3-5, 39-41] at liquid nitrogen temperatures (T=77K), the 
distance ∆	� between electron energy levels (?� = 1,  @� = 1) (1p - state) and (?� = 1, @� = 0) (1s 
state), according to Eq. (18) 

∆	� = OB�,�� + [�P(�� ��)cd�⁄
^�CCC ≅ 480�;�, 

where B�,�=4.493 [51]. The distance ∆(S̅) between the hole energy levels (23) is ∆(S̅) = ℏpg(?� =
1, S̅) ≅ 53�;�. 
      For SN of the radius a = 2nm, ∆(S̅) is several times greater than the thermal energy �� at 
T=77K. In a nanolaser on CdS nanocrystals, the pumping energy h�� ≅ 3.11;� (22) would 
correspond to visible light, and lasing at energy ∆(S̅) ≅53 meV would occur in the infrared range 
[18].  

Excitons Formed from Spatially Separated Electrons and Holes in Quasi - Zero - Dimensional 
Semiconductor Nanosystems 

In the experimental study [47], it was found that excess electrons produced during interband 
excitation of the cadmium sulfide QD have a finite probability of overcoming the potential barrier 
and penetrating into the borosilicate glass matrix into which the QD is immersed. In experimental 
studies [52] (as well as in [47]) of glass samples with cadmium-sulfide and zinc-selenide QDs, it 
was found that the electron can be localized in the polarization well near the outer QD surface, 
while the hole moves within the QD volume. 
In [52], the optical properties of borosilicate glass samples containing QD zinc selenide are 
experimentally studied. The average radii of such QDs are in the range a ≈ 2.0–4.8 nm. In this case, 
the values of a are comparable to the exciton Bohr radius aex ≈ 3.7 nm in a ZnSe single crystal. At 
low QD concentrations, when the optical properties of the samples are mainly controlled by those of 
individual QDs in the borosilicate glass matrix, a shift of the peak of the low temperature 
luminescence spectrum to the short wavelength region (with respect to the band gap Eg of the zinc 
selenide - single crystal) was observed. The authors of [52] assumed that this shift is caused by 
quantum confinement of the energy spectra of the electron and hole localized near the spherical 
surface of the QD.  
The use of semiconductor nanosystems as the active region of nanolasers is prevented by the low 
binding energy of the QD exciton [8, 9, 18]. Therefore, studies directed toward the search for 
nanostructures in which a significant increase in the binding energy of QD excitons would be 
observed are of importance. 
The theory of an exciton with a spatially separated electron and hole (the hole moves within the 
quantum dot  (QD) volume, and the electron is localized at the outer sphere cal QD–dielectric 
matrix interface) was developed within the modified effective mass method in which the reduced 
effective exciton mass is a function of the semiconductor QD radius a [37,38]. 
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The effect of significantly increasing the binding energy |Eex(a)|    of the exciton ground state in a 
nanosystem containing zinc-selenide QDs with radii 4,0 ≤ # ≤ 29,8 nm  was detected; in 
comparison with the exciton binding energy in a zinc-selenide single crystal, the increase factor is 
4.1–72.6. It was shown that the effect of significantly increasing the binding energy |Eex(a)|   of the 
exciton ground state in the nanosystem under study is controlled by two factors: (i) a substantial 
increase in the electron–hole Coulomb interaction energy and an increase in the energy of the 
interaction of the electron and hole with “foreign” images (the “dielectric enhancement” effect); (ii) 
spatial confinement of the quantization region by the QD volume; in this case, as the QD radius a 
increases, starting from  a ≥  29.8 nm, the exciton becomes two-dimensional with a ground-state 
energy that exceeds the exciton binding energy in a zinc-selenide single crystal by almost two 
orders of magnitude [37,38]. 
The average zinc- selenide QD radius was determined by comparing the dependence of the exciton 
ground-state energy on the QD radius, obtained by the variational method within the modified 
effective mass method, with the experimental peak of the low-temperature luminescence spectrum. 
It was shown that the short-wavelength shift of the peak of the low-temperature luminescence 
spectrum of the samples containing zinc-selenide QDs, which was observed under the experimental 
conditions, is caused by renormalization of the electron–hole Coulomb interaction energy and also 
the energy of the polarization interaction of the electron and hole with the spherical QD–dielectric 
matrix interface, related to spatial confinement of the quantization region by the QD volume. In this 
case, the hole moves in the QD volume, and the electron is localized at the outer spherical QD–
dielectric matrix interface [37,38]. 
To apply semiconductor nanosystems containing zinc- selenide  QDs as the active region of lasers, 
it is required that the exciton binding energy |Eex(a)|  (QD radius  4,0 ≤ # ≤ 29,8 nm)  in the 
nanosystem be on the order of several kT0 at room temperature T0 (k is the Boltzmann constant). 
Nanosystems consisting of zinc- selenide QDs grown in a borosilicate glass matrix can be used as 
the active region of semiconductor QD lasers. The parameter |Eex(a)/kT0| take significant values in 
the range from 3.1 to 56 [37,38]. 

CONCLUSION 

     The review provides the results of theoretical investigations of excitons states (electron - hole 
pairs states) in a quasi - zero - dimensional nanosystems consisting of spherical semiconductor 
nanocrystals (quantum dots)   placed in transparent dielectric matrices.The theory of exciton states 
in a QDs under conditions of dominating polarization interaction of an electron and a hole with a 
spherical (quantum dot – dielectric matrix) interface are developed. An shown, that the energy 
spectrum  of heavy hole in the valence band QD is equivalent to the spectrum of hole carrying out 
oscillator vibrations  in the adiabatic electron potential.  
   In the framework of the dipole approximation theory are developed interband absorption of light 
in quasi – zero – dimensional nanosystems. An expression is obtained for the light absorption 
coefficient under conditions where the polarization interaction of the electron and a hole with the 
surface of the SNs plays role. In result, an shown on the basis of the given model of quasi – zero – 
dimensional nanosystems that the absorption and emission edge of SNs is formed by two transitions 
of comparable intensity from different hole size – quantization levels and into a lower electron size 
– quantization level. Propose a theoretical prospect of using hole transitions between equidistant 
series of quantum levels observed in nanocrystals for desining a nanolaser. 

The theory of an exciton formed from spatially separated electron and hole (the hole is in the 
quantum dot volume, and the electron is localized at the outer spherical quantum dot–dielectric 
matrix interface) is developed within the modified effective mass method. The effect of 
significantly increasing the exciton binding energy in quantum dots of  zinc selenide, synthesized in 
a borosilicate glass matrix, relative to that in a zinc selenide single crystal is revealed. It was shown 
that the short-wavelength shift of the peak of the low-temperature luminescence spectrum of the 
samples containing zinc-selenide QDs, which was observed under the experimental conditions, is 
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caused by renormalization of the electron–hole Coulomb interaction energy and also the energy of 
the polarization interaction of the electron and hole with the spherical QD–dielectric matrix 
interface, related to spatial confinement of the quantization region by the QD volume. Nanosystems 
consisting of zinc- selenide QDs grown in a borosilicate glass matrix can be used as the active 
region of semiconductor QD lasers.  
 

References 

[1] AD Yoffe; Advances Phys., 1993, 42, 173. 

[2] JI Alferov; Physics Uspekhi, 2002, 172, 1068.  

[3]  AI Ekimov; AA Onushchenko; Al L Efros; Sov. Phys. JETP Lett., 1986, 43,  292. 

[4] AL Efros; Al L Efros; Sov. Phys. Semiconductors, 1982, 16, 955. 

[5] AI Ekimov; AA Onushchenko; Sov. Phys. JETP,  1986, 63, 1054. 

[6] Y Kulchin; A Scherbakov; V Dzyuba;V Voznesenskiy; Quantum Electronics, 2008, 38, 154.  

[7] V Dzyuba ;Y Kulchin; A Krasnok; Technical Physics Letters,  2010, 36, 1.  

[8] Y Kulchin; V Dzyuba;  A Scherbakov; Semiconductors, 2009, 43, 331.  

[9] V Dzyuba ;Y Kulchin; Pasific Science Review, 2010, 12, 102. 

[10] SI Pokutnyi. Theory of excitons in quasi – zero – dimensional semiconductors systems, 

Academperiodika, Kiev, 2003; pp. 24-35, 82-94. 

[11] SI Pokutnyi. Spectroscopy of electron and exciton states in low – dimensional systems, 

Academperiodika, Kiev, 2005; pp. 44-55. 

[12] S I Pokutnyi. Optics of nanosystems, Academperiodika, Kiev, 2007; pp. 54-64. 

[13] S I Pokutnyi; AP Shpak; Progr. Phys. Metal., 2005, 6, 105. 

[14] SI Pokutnyi; Ukr. J. Phys. Rev., 2006, 3, 46. 

[15] SI Pokutnyi; AP Shpak;VN Uvarov; Progr. Phys. Metal., 2007, 8, 1. 

[16] SI Pokutnyi; Phys. Low – Dim. Struct., 2002, 11/12, 67. 

[17] SI Pokutnyi; Phys. Solid State, 2000, 42, 244. 

[18] SI Pokutnyi; Phys. Lett. A., 2005, 342, 347. 

[19] SI Pokutnyi; Phys. Low. – Dim. Struct., 2001, 9/10, 21. 

[20] SI Pokutnyi; Phys. Low. – Dim. Struct., 2002, 7/8, 39. 

[21] SI Pokutnyi; Semiconductors, 2006, 40, 217. 

[22] SI Pokutnyi; J. Appl. Phys., 2004, 96, 1115. 

[23] SI Pokutnyi; Phys. Solid State, 1997, 39, 720. 

[24] SI Pokutnyi; Phys. Solid State, 1997, 39, 604. 

[25] SI Pokutnyi; Semiconductors, 2003, 37, 743. 

[26] N A Efremov; SI Pokutnyi; Sov. Phys. Solid. State, 1990, 32, 955. 

[27] SI Pokutnyi; Sov. Phys. Semiconductors, 1991, 25, 381. 



Sergey I. Pokutnyi et al                                                               Journal of  Applied Chemistry, 2013, 1(1):5-17 

17 

 

[28] SI Pokutnyi; Phys. Status Solidi B., 1992, 173, 607. 

[29] SI Pokutnyi; Phys. Lett. A.,  1992, 168, 433. 

[30] SI Pokutnyi; Sov. Phys. Solid. State, 1992, 34, 1278. 

[31] NA Efremov; SI Pokutnyi; Sov. Phys. Solid. State, 1985, 27, 27. 

[32] SI Pokutnyi; Semiconductors,  1996, 30, 694. 

[33] SI Pokutnyi; Semiconductors,  1996, 30, 1015. 

[34]  SI Pokutnyi; Phys. Solid State, 1996, 38, 1463. 

[35] SI Pokutnyi; Phys. Lett. A.,  1995, 203, 388. 

[36] SI Pokutnyi; Phys. Solid State,  1996, 38, 281. 

[37] SI Pokutnyi; Semiconductors, 2013, 47, 791. 

[38] SI Pokutnyi; Technical Physics Letters,  2013, 39, 233. 

[39] S.I. Pokutnyi; Semiconductors, 1997, 31, 1443. 

[40] SI Pokutnyi; AP Shpak; VN Uvarov; Metal Phys. Advanc. Technol., 2008, 30,   459. 

[41] SI Pokutnyi; Semiconductors,  2005, 39, 1066. 

[42] SI Pokutnyi; Semiconductors, 2007, 41, 1323. 

[43] SI Pokutnyi; Semiconductors, 2010, 44, 488.  

[44] SI Pokutnyi; Semiconductors, 2012, 46, 174. 

[45] IM Lifshitz; VV Slezov; Sov. Phys. JETP, 1958, 8, 331. 

[46] AI Ekimov; AL Efros; Solid State Commun., 1985, 56, 921. 

[47] V Grabovskis; Y Dzenis; A Ekimov; Sov. Phys. Solid State, 1989, 31, 272. 

[48] A Ekimov; A Onushchenko; Sov. Phys. JETP Lett., 1984, 40, 337. 

[49] SI Pokutnyi; Phys. Solid. State, 1999, 41, 1198. 

[50] OV Bogdankevich; SA Darznek; P G. Eliseev. Popuprovodnikovye lazery, Nauka, Moskva, 

1976; pp. 94-98. 

[51] S Flugge. Practical Quantum Machanics I, Springer – Verlag, Berlin, 1971; pp. 111-114. [52] 

[52] N V Bondar M S Brodyn; Physics E, 2010, 42, 1549.  

 

 

   

 

 


